Solved Exercise: Integral Example 2
Solve the indefinite integral:
$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \ dx $$
To solve the integral, use the substitution method:
$$ d( \log x ) = \frac{1}{x} \ dx $$
Multiply both sides by \( x \):
$$ d( \log x ) \cdot x = \frac{1}{x} \ dx \cdot x $$
This way, you get \( dx \):
$$ d( \log x ) \cdot x = dx $$
Substitute \( dx = d(\log x) \cdot x \) in the integral:
$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \cdot [ d( \log x ) \cdot x ] $$
Simplify \( x \) from the numerator and denominator:
$$ \int \frac{1}{\sqrt{1-\log^2 x}} \cdot d( \log x ) $$
Let \( t = \log x \) as an auxiliary variable:
$$ \int \frac{1}{\sqrt{1-t^2}} \ dt $$
Now the integral is immediate:
$$ \int \frac{1}{\sqrt{1-t^2}} \ dt = \arcsin(t) + c $$
Replace \( t = \log x \):
$$ \int \frac{1}{\sqrt{1-t^2}} \ dt = \arcsin( \log x ) $$
Thus, the solution to the integral is:
$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \ dx = \arcsin( \log(x) ) $$