Solved Exercise: Integral Example 2

Solve the indefinite integral:

$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \ dx $$

To solve the integral, use the substitution method:

$$ d( \log x ) = \frac{1}{x} \ dx $$

Multiply both sides by \( x \):

$$ d( \log x ) \cdot x = \frac{1}{x} \ dx \cdot x $$

This way, you get \( dx \):

$$ d( \log x ) \cdot x = dx $$

Substitute \( dx = d(\log x) \cdot x \) in the integral:

$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \cdot [ d( \log x ) \cdot x ] $$

Simplify \( x \) from the numerator and denominator:

$$ \int \frac{1}{\sqrt{1-\log^2 x}} \cdot d( \log x ) $$

Let \( t = \log x \) as an auxiliary variable:

$$ \int \frac{1}{\sqrt{1-t^2}} \ dt $$

Now the integral is immediate:

$$ \int \frac{1}{\sqrt{1-t^2}} \ dt = \arcsin(t) + c $$

Replace \( t = \log x \):

$$ \int \frac{1}{\sqrt{1-t^2}} \ dt = \arcsin( \log x ) $$

Thus, the solution to the integral is:

$$ \int \frac{1}{x \sqrt{1-\log^2 x}} \ dx = \arcsin( \log(x) ) $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base