Solved Exercise: Integral Example 5
Solve the indefinite integral:
$$ \int (x+2)^3 \, dx $$
Step-by-Step Solution
We'll solve this integral using the substitution method.
First, set \( u = x + 2 \).
$$ u = x + 2 $$
Then, the differential of \( u = x + 2 \) is:
$$ du = dx $$
Substitute \( u = x + 2 \) and \( dx = du \) into the integral:
$$ \int (x+2)^3 \, dx = \int u^3 \, du $$
This integral is now straightforward to solve:
$$ \int u^3 \, du = \frac{u^4}{4} + c $$
Now, substitute \( u = x + 2 \) back into the solution:
$$ \int u^3 \, du = \frac{(x+2)^4}{4} + c $$
Thus, the solution to the integral is:
$$ \int (x+2)^3 \, dx = \frac{(x+2)^4}{4} + c $$