Solved Exercise: Integral Example 4

Let's solve this indefinite integral:

$$ \int \frac{e^{x+1}}{3+e^x} \, dx $$

Step-by-step solution:

First, we rewrite the integral in an equivalent form, noting that \( e^{x+1} = e^x \cdot e \):

$$ \int \frac{e^x \cdot e}{3+e^x} \, dx $$

$$ = e \cdot \int \frac{e^x}{3+e^x} \, dx $$

To evaluate this integral, we'll use the substitution method.

Let’s consider the differential of \( 3 + e^x \):

$$ d(3+e^x) = e^x \, dx $$

which gives:

$$ dx = \frac{d(3+e^x)}{e^x} $$

Now, we substitute \( dx = \frac{d(3+e^x)}{e^x} \) into the integral:

$$ e \cdot \int \frac{e^x}{3+e^x} \, dx $$

$$ = e \cdot \int \frac{e^x}{3+e^x} \cdot \frac{d(3+e^x)}{e^x} $$

$$ = e \cdot \int \frac{d(3+e^x)}{3+e^x} $$

$$ = e \cdot \int \frac{1}{3+e^x} \, d(3+e^x) $$

Now, we introduce the substitution \( t = 3 + e^x \):

$$ = e \cdot \int \frac{1}{t} \, dt $$

This simplifies to the integral \( \int \frac{1}{t} \, dt = \log |t| + C \):

$$ = e \cdot \log |t| + C $$

Recalling that \( t = 3 + e^x \):

$$ e \cdot \log |t| + C = e \cdot \log |3 + e^x| + C $$

Therefore, the solution to the integral is:

$$ \int \frac{e^{x+1}}{3+e^x} \, dx = e \cdot \log |3 + e^x| + C $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base