Solved Exercise: Integral Example 4
Let's solve this indefinite integral:
$$ \int \frac{e^{x+1}}{3+e^x} \, dx $$
Step-by-step solution:
First, we rewrite the integral in an equivalent form, noting that \( e^{x+1} = e^x \cdot e \):
$$ \int \frac{e^x \cdot e}{3+e^x} \, dx $$
$$ = e \cdot \int \frac{e^x}{3+e^x} \, dx $$
To evaluate this integral, we'll use the substitution method.
Let’s consider the differential of \( 3 + e^x \):
$$ d(3+e^x) = e^x \, dx $$
which gives:
$$ dx = \frac{d(3+e^x)}{e^x} $$
Now, we substitute \( dx = \frac{d(3+e^x)}{e^x} \) into the integral:
$$ e \cdot \int \frac{e^x}{3+e^x} \, dx $$
$$ = e \cdot \int \frac{e^x}{3+e^x} \cdot \frac{d(3+e^x)}{e^x} $$
$$ = e \cdot \int \frac{d(3+e^x)}{3+e^x} $$
$$ = e \cdot \int \frac{1}{3+e^x} \, d(3+e^x) $$
Now, we introduce the substitution \( t = 3 + e^x \):
$$ = e \cdot \int \frac{1}{t} \, dt $$
This simplifies to the integral \( \int \frac{1}{t} \, dt = \log |t| + C \):
$$ = e \cdot \log |t| + C $$
Recalling that \( t = 3 + e^x \):
$$ e \cdot \log |t| + C = e \cdot \log |3 + e^x| + C $$
Therefore, the solution to the integral is:
$$ \int \frac{e^{x+1}}{3+e^x} \, dx = e \cdot \log |3 + e^x| + C $$