Calculating Integrals in Python
To calculate integrals of a function in Python, you can use either the "scipy" or "sympy" library. Both modules offer various tools for numerical computations, including integration.
Definite Integral
To compute a definite integral \(\int_a^b f(x) \, dx\), you can use the quad() function from scipy.integrate.
from scipy.integrate import quad
For example, let's define the function to be integrated:
def integrand(x):
return 2*x
Set the integration limits from 0 to 1.
a = 0
b = 1
Now, compute the definite integral using the quad() function.
result, error = quad(integrand, a, b)
This function returns two values: the result of the definite integral and the associated error.
print(f"Definite integral: {result}")
Definite integral: 1.0
The estimated error is:
print(f"Estimated error: {error}")
Estimated error: 1.1102230246251565e-14
The integral of \(f(x)=2x\) over the interval (0,1) is indeed 1.0 because the antiderivative of \(f(x)=2x\) is \(F(x)=x^2\).
$$ \int_0^1 2x \, dx = [ x^2 ]_0^1 = (1)^2 - (0)^2 = 1.0 $$
Alternative Method
Another way to calculate a definite integral is by using the integrate() function from the sympy library.
from sympy import symbols, integrate
First, define the symbol "x" as the independent variable:
x = symbols('x')
Next, define the function $ f(x)=2x $ that you want to integrate:
f = 2*x
Finally, compute the integral of the function f(x) using the integrate() function:
integral = integrate(f, (x,0,1))
The first argument is the integrand function f, and the second argument is a tuple (x,0,1), which specifies the variable of integration 'x' and the integration interval (0,1).
print(integral)
1
The result is always the same: the integral of f(x)=2x over the interval (0,1) is 1.
Indefinite Integral (antiderivative)
To compute an indefinite integral, you can use sympy, a library for symbolic computation.
from sympy import symbols, integrate
First, define the symbol for the independent variable:
x = symbols('x')
Then define the function to be integrated, which in this case is \( f(x)=2x \).
f = 2*x
Now, compute the indefinite integral of the function using the integrate(f,x) function.
integral = integrate(f, x)
The first parameter is the integrand \(f=2x\), and the second parameter \(x\) is the variable of integration.
print(f"Indefinite integral: {integral}")
Indefinite integral: x**2
The indefinite integral of \(f(x)=2x\) is the antiderivative \(F(x)=x^2+c\).
$$ \int 2x \, dx = x^2 + c $$
Where 'c' is an arbitrary constant.
These are the basic methods for calculating integrals in Python using `scipy` for definite integrals and `sympy` for indefinite integrals.