Creating a Chi-Square Table in Python

This code uses the scipy.stats library to calculate chi-square critical values and organizes them into a table using pandas. The values are rounded to two decimal places for clarity.

import pandas as pd
import numpy as np
from scipy.stats import chi2

# Define degrees of freedom and significance levels
degrees_of_freedom_extended = np.arange(1, 41)
alpha_values_extended = [0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001]

# Build the table with the specified parameters
chi_square_table_extended = pd.DataFrame({
    f'α = {alpha}': [round(chi2.ppf(1 - alpha, df), 2) for df in degrees_of_freedom_extended]
    for alpha in alpha_values_extended
}, index=degrees_of_freedom_extended)

chi_square_table_extended.index.name = 'Degrees of Freedom'

# Display the table
chi_square_table_extended

Let’s walk through the code in detail.

First, I import the necessary libraries:

import pandas as pd
import numpy as np
from scipy.stats import chi2

The code makes use of three external modules:

  • Pandas is used to create and manage the table as a DataFrame.
  • NumPy is used to generate an array for the degrees of freedom.
  • scipy.stats.chi2 provides the chi-square distribution for calculating the critical values.

Next, I set the parameters for the table: the degrees of freedom and the significance levels.

degrees_of_freedom_extended = np.arange(1, 41)
alpha_values_extended = [0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001]

The variable degrees_of_freedom_extended creates an array ranging from 1 to 40 using the function np.arange(1, 41). These values represent the degrees of freedom for the table.

The variable alpha_values_extended stores a list of the significance levels (α) to be considered.

Now, I construct the table:

chi_square_table_extended = pd.DataFrame({
f'α = {alpha}': [round(chi2.ppf(1 - alpha, df), 2) for df in degrees_of_freedom_extended]
for alpha in alpha_values_extended
}, index=degrees_of_freedom_extended)

This part of the code creates a DataFrame using pandas.

The table structure is built using a dictionary comprehension where:

  • The keys of the dictionary are the column names, formatted as `α = {alpha}` to indicate the significance level.
  • The column values are generated by calculating the critical values for each degree of freedom using `chi2.ppf(1 - alpha, df)`.
  • `chi2.ppf(1 - alpha, df)` calculates the chi-square critical value for a specific significance level and degree of freedom.
  • `round(..., 2)` rounds each value to two decimal places.
  • `index=degrees_of_freedom_extended` sets the DataFrame index to the array of degrees of freedom.

I then assign the name “Degrees of Freedom” to the DataFrame index to clearly indicate that the rows represent the degrees of freedom.

chi_square_table_extended.index.name = 'Degrees of Freedom'

Finally, I display the table that has been created:

chi_square_table_extended

This line displays the DataFrame. In an interactive environment (such as a Jupyter notebook), this command shows the chi-square table in a tabular format.

The code generates a chi-square critical values table for various degrees of freedom (from 1 to 40) and specific significance levels (α), rounding values to two decimal places for better readability.

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Python

  1. The Python Language
  2. How to Install Python on Your PC
  3. How to Write a Program in Python
  4. How to Use Python in Interactive Mode
  5. Variables
  6. Numbers
  7. Logical Operators
  8. Iterative Structures (or Loops)
  9. Conditional Structures
  10. Exceptions
  11. Files in Python
  12. Classes
  13. Modules

Miscellaneous

Source