Math exercises integral 1

Solve this indefinite integral

$$ \int \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{1-x^2}} dx $$

Solved step by step

To solve the antiderivative, apply a property of the integral calculus. Transform the integral of a sum into a sum of integrals

$$ \int \frac{1}{\sqrt{x}} - \int \frac{1}{\sqrt{1-x^2}} dx $$

I write the first term using power notation

$$ \int x^{- \frac{1}{2}} - \int \frac{1}{\sqrt{1-x^2}} dx $$

Now the two integrals are immediate integrals.

The first integral is the integral of a power.

$$ [\frac{ x^{- \frac{1}{2}+1} }{ - \frac{1}{2}+1 } + c ] - \int \frac{1}{\sqrt{1-x^2}} dx $$

$$ \frac{ x^{\frac{-1+2}{2}} }{ \frac{-1+2}{2} } + c - \int \frac{1}{\sqrt{1-x^2}} dx $$

$$ \frac{ x^{\frac{1}{2}} }{ \frac{1}{2} } + c - \int \frac{1}{\sqrt{1-x^2}} dx $$

$$ \sqrt{x} \cdot \frac{2}{1} + c - \int \frac{1}{\sqrt{1-x^2}} dx $$

$$ 2 \cdot \sqrt{x} + c - \int \frac{1}{\sqrt{1-x^2}} dx $$

The second integral is the integral of the arcsine of x

$$ 2 \cdot \sqrt{x} + c - \arcsin x $$

The solution of the integral is

$$ 2 \cdot \sqrt{x} - \arcsin x + c $$

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base