Exercise on Vector Space Bases 4

We aim to determine whether every basis of the vector space $V = \mathbb{R}^n$ has exactly $n$ elements.

$$ V = \mathbb{R}^n $$

By definition, a vector space has dimension $n$ if any basis $ \{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \} $ consists of exactly $n$ linearly independent vectors:

$$ B = \{ \vec{v}_1 , \vec{v}_2 , \dots , \vec{v}_n \} $$

To verify this, we consider a well-known candidate: the set of standard unit vectors.

$$ B = \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\} $$

Step 1: Proving that the set spans ℝn

The set $\{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ spans $\mathbb{R}^n$ if any vector $\vec{v} = (a_1, a_2, \dots, a_n)$ can be written as a linear combination of these vectors:

$$ k_1 \vec{v}_1 + k_2 \vec{v}_2 + \dots + k_n \vec{v}_n = \vec{v} $$

Substituting the basis vectors gives:

$$ k_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + k_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} $$

This is equivalent to the system:

$$ \begin{cases} k_1 = a_1 \\ k_2 = a_2 \\ \vdots \\ k_n = a_n \end{cases} $$

Each equation has a unique solution: simply take $k_i = a_i$ for all $i$.

Thus, the set $\{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ spans $\mathbb{R}^n$.

Step 2: Proving linear independence

A set of vectors is linearly independent if the only solution to the equation:

$$ k_1 \vec{v}_1 + k_2 \vec{v}_2 + \dots + k_n \vec{v}_n = \vec{0} $$

is the trivial one: $k_1 = k_2 = \dots = k_n = 0$.

Substituting the vectors:

$$ k_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + k_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} $$

This results in the system:

$$ \begin{cases} k_1 = 0 \\ k_2 = 0 \\ \vdots \\ k_n = 0 \end{cases} $$

which clearly admits only the trivial solution.

Therefore, the vectors $\{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ are linearly independent.

Step 3: Conclusion

Since the set $\{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ both spans $\mathbb{R}^n$ and is linearly independent, we conclude that:

It forms a basis for $\mathbb{R}^n$.

Note: The vectors $\{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ - where $\vec{v}_1 = (1, 0, \dots, 0)$, $\vec{v}_2 = (0, 1, \dots, 0)$, ..., $\vec{v}_n = (0, 0, \dots, 1)$ - make up the standard basis of $\mathbb{R}^n$.

According to the basis dimension theorem, all bases of a vector space have the same cardinality - that is, the same number of vectors.

Since the standard basis contains $n$ vectors, it follows that every basis of $\mathbb{R}^n$ consists of exactly $n$ linearly independent vectors.

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Vector Bases