Linear Independence Theorem for Vectors 2
Given a finitely generated vector space V, if we consider a set of generators $$ \{ \vec{v}_1, \vec{v}_2, ...,\vec{v}_n \} $$ and a set of linearly independent vectors belonging to V $$ \{ \vec{w}_1, \vec{w}_2, ..., \vec{w}_p \} $$, then $$ p \le n $$.
Essentially, the number of linearly independent vectors in V is always less than or equal to the number of vectors in a set of generators for V.
The Proof
For a real vector space V, let's consider a set of generators for V
$$ \{ \vec{v}_1, \vec{v}_2, ...,\vec{v}_n \} $$
and a set of linearly independent vectors belonging to V
$$ \{ \vec{w}_1, \vec{w}_2, ..., \vec{w}_p \} $$
Any vector w ∈ V can be generated by the linear combination of the generators {v1,v2,...,vn}
$$ \vec{w}_1 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_n \vec{v}_n $$
By assumption, w1 is linearly independent.
Therefore, at least one of the coefficients λ must be nonzero. Otherwise, it would be linearly dependent.
We consider the last coefficient λn≠0.
$$ \lambda_n \ne 0 $$
Since λn≠0 is nonzero, we divide both sides of the equation by λn
$$ \vec{w}_1 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_{n-1} \vec{v}_{n-1} + \lambda_n \vec{v}_n $$
$$ \frac{1}{ \lambda_n} \vec{w}_1 = \frac{\lambda_1}{ \lambda_n} \vec{v}_1 + \frac{\lambda_2}{ \lambda_n} \vec{v}_2 + ... + \frac{\lambda_{n-1}}{\lambda_n} \vec{v}_{n-1} + \frac{\lambda_n}{ \lambda_n} \vec{v}_n $$
$$ \frac{1}{ \lambda_n} \vec{w}_1 = \frac{\lambda_1}{ \lambda_n} \vec{v}_1 + \frac{\lambda_2}{ \lambda_n} \vec{v}_2 + ... + \frac{\lambda_{n-1}}{\lambda_n} \vec{v}_{n-1} + \vec{v}_n $$
Next, we derive the vector vn
$$ \vec{v}_n = \frac{1}{ \lambda_n} \vec{w}_1 - \frac{\lambda_1}{ \lambda_n} \vec{v}_1 - \frac{\lambda_2}{ \lambda_n} \vec{v}_2 - ... - \frac{\lambda_{n-1}}{\lambda_n} \vec{v}_{n-1} $$
We then replace the coefficients with another variable 1/λn=α1, λ1/λn=α2, λ2/λn=α3,..., λn-1/λn=αn,
$$ \vec{v}_n = \alpha_1 \vec{w}_1 - \alpha_2 \vec{v}_1 - \alpha_3 \vec{v}_2 - ... - \alpha_n \vec{v}_{n-1} $$
Thus, the set of vectors {w1,v1,v2,...,vn-1} is still a set of generators with the same number of vectors as before because if we replace vn= α1 w1 + α2 v1 + α3 v2 +...+ αnvn-1 in the linear combination of a generic vector v of the vector space V, we get another set of generators for V.
$$ \vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_n \vec{v}_n $$
Knowing that vn= α1 w1 + α2 v1 + α3 v2 +...+ αnvn-1
$$ \vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_n ( \alpha_1 \vec{w}_1 - \alpha_2 \vec{v}_1 - \alpha_3 \vec{v}_2 - ... - \alpha_n \vec{v}_{n-1} ) $$
$$ \vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_n \alpha_1 \vec{w}_1 - \lambda_n \alpha_2 \vec{v}_1 - \lambda_n \alpha_3 \vec{v}_2 - ... - \lambda_n \alpha_n \vec{v}_{n-1} $$
$$ \vec{v} = ( \lambda_1 - \lambda_n \alpha_2 ) \vec{v}_1 + ( \lambda_2 - \lambda_n \alpha_3 ) \vec{v}_2 + ... + (\lambda_{n-1} - \lambda_n \alpha_n ) \vec{v}_{n-1} + ( \lambda_n \alpha_1) \vec{w}_1 $$
We then replace the coefficients with another variable λ1-λnα2=β1, and so on.
$$ \vec{v} = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2 + ... + \beta_{n-1} \vec{v}_{n-1} + \beta_n \vec{w}_1 $$
Thus, the vector v is a combination of n vectors {w1,v1,v2,...,vn-1}
Next, we repeat the same process, hypothesizing that βn-1≠0 and replacing vn-1 with w2
We continue by replacing vn-2 with w3, and so on... until we replace v1 with wn
Ultimately, once all the generator vectors are replaced, we obtain a set of generators {w1,w2,...,wn}
$$ \vec{v} = \lambda_1 \vec{w}_1 + \lambda_2 \vec{w}_2 + ... + \lambda_{n-1} \lambda{w}_{n-1} + \lambda_n \vec{w}_n $$
Given that the initially hypothesized linearly independent vectors were p vectors
$$ \{ \vec{w}_1, \vec{w}_2, ...,\vec{w}_p \} $$
If p>n, there would be vectors wn+1, wn+2, ... , wp that are not included in the set of generators {w1,w2,...,wn}
$$ \{ \vec{w}_1, \vec{w}_2 , ... , \vec{w}_n, \color{red}{ \vec{w}_{n+1} }, \color{red}{ \vec{w}_{n+2} }, ..., \color{red}{ \vec{w}_{p} } \} $$
Hence, I could generate the vector wn+1 using a linear combination of the generator vectors {w1,w2,...,wn}
$$ \vec{w}_{n+1} = \lambda_1 \vec{w}_1 + \lambda_2 \vec{w}_2 + ... + \lambda_{n-1} \lambda{w}_{n-1} + \lambda_n \vec{w}_n $$
The vector wn+1 is linearly dependent on {w1,w2,...,wn}
However, this contradicts the initial assumption which states that the vectors {w1,w2,...,wp} are linearly independent.
If p>n is not true, then the opposite must be true, i.e., p≤n.
In conclusion, if the vector space V has p linearly independent vectors, then the number n of vectors in any generator of V must be equal to or greater than p.
$$ n \le p $$
And so on.