Solved Exercise Using the Gauss Jordan Algorithm

I have a 4x4 matrix M, and I need to compute its row echelon form using the Gauss Jordan method.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 1 & 0 & 2 & 1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

The first column already has a pivot at the top left.

So, I'll nullify the non-zero elements below the pivot, using Gauss' rule:

$$ R_i - ( q_j / p_k ) \cdot R_k $$

First, I nullify the element qj=1

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ [1] & 0 & 2 & 1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 1-(1)·1 & 0-(1)·1 & 2-(1)·1 & 1-(1)·2 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

Then, I nullify the element qj=2

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ [2] & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 2-(2)·1 & 0-(2)·1 & 4-(2)·1 & 2-(2)·2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

I swap rows R2 and R3.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -1 & 1 & -1 \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

Then, I multiply R2 → R2·(-1)

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -1·(-1) & 1·(-1) & -1·(-1) \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

Thus, I've also obtained a pivot in the second column.

Now, I nullify the elements below qj=3 and qj=-2.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 3-(3/1)·1 & -3-(3/1)·(-1) & 3-(3/1)·1 \\ 0 & -2-(-2/1)·1 & 2-(-2/1)·(-1) & -2-(-2/1)·1 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$

The matrix now has only two pivots.

Note: The number of pivots in the row echelon form corresponds to the rank of the original matrix M4,4. Therefore, the matrix M4,4 has a rank of 2.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Linear Dependency and Independence