Table of Maclaurin Series Expansions

Below are the Maclaurin series expansions for several fundamental functions.

Exponential Function

$$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) $$

See proof

Natural Logarithm

$$ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + o(x^n) $$

Sine Function

$$ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) $$

See proof

Cosine Function

$$ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n}) $$

See proof

Tangent Function for |x| < π/2

$$ \tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots + o(x^6) $$

Secant Function for |x| < π/2

$$ \sec(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{4!} + \dots + o(x^n) $$

Arcsine Function for |x| < 1

$$ \arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \frac{35x^9}{1152} + o(x^9) $$

Arccosine Function for |x| < 1

$$ \arccos(x) = \frac{\pi}{2} - x + \frac{x^3}{6} - \frac{3x^5}{40} + \frac{5x^7}{112} - \frac{35x^9}{1152} + o(x^9) $$

Arctangent Function for |x| < 1

$$ \arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^9) $$

 

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base