Fourier Transform of a Cosine Function

The Fourier Transform of the cosine function in the time domain

$$ x(t) = \cos(2 \pi f_0 t) $$

can be calculated using the integral

$$ X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j 2 \pi f t} \, dt $$

Yet, a faster and simpler approach uses the cosine’s representation with complex exponentials, thanks to Euler’s formula.

$$ x(t) = \cos(2 \pi f_0 t) = \frac{e^{j 2 \pi f_0 t} + e^{-j 2 \pi f_0 t}}{2} $$

This allows us to express the time-domain cosine function \( x(t) = \cos(2 \pi f_0 t) \) as:

$$ x(t) = \frac{1}{2} e^{j 2 \pi f_0 t} + \frac{1}{2} e^{-j 2 \pi f_0 t} $$

Now, we can calculate the Fourier Transform of each term separately.

$$ X(f) = F \left[ \frac{1}{2} e^{j 2 \pi f_0 t} + \frac{1}{2} e^{-j 2 \pi f_0 t} \right] $$

By the linearity property, the Fourier Transform of a sum equals the sum of the individual transforms.

$$ X(f) = F \left[ \frac{1}{2} e^{j 2 \pi f_0 t} \right] + F \left[ \frac{1}{2} e^{-j 2 \pi f_0 t} \right] $$

$$ X(f) = \frac{1}{2} \cdot F \left[ e^{j 2 \pi f_0 t} \right] + \frac{1}{2} \cdot F \left[ e^{-j 2 \pi f_0 t} \right] $$

Referring to the known Fourier Transforms:

  • The transform of \( e^{j 2 \pi f_0 t} \) produces a delta function at \( f = f_0 \)
  • The transform of \( e^{-j 2 \pi f_0 t} \) produces a delta function at \( f = -f_0 \)

By substituting these results, we obtain the frequency-domain function:

$$ X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) $$

where \( \delta(f) \) is the Dirac delta function.

Thus, the Fourier Transform of \( x(t) = \cos(2 \pi f_0 t) \) becomes:

$$ X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) $$

This result reveals that the Fourier Transform of a pure cosine function is centered at two distinct frequencies, \( \pm f_0 \).

frequency diagram

This approach avoids direct integration by applying known Fourier properties, making the process more efficient and straightforward.

And so forth.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Fourier Transforms

Known Transforms