Key Fourier Transforms Overview

This table provides a concise overview of the essential Fourier transforms for common functions in signal analysis. Each row presents a function in the time domain along with its corresponding Fourier transform in the frequency domain.

Function in the Time Domain \( f(t) \) Fourier Transform \( F(f) \)
\( \delta(t) \) 1
1 \( \delta(f) \)
\( e^{j 2 \pi f_0 t} \) \( \delta(f - f_0) \)
\( e^{j -2 \pi f_0 t} \) \( \delta(f + f_0) \)
\( \cos(2 \pi f_0 t) \) \( \frac{1}{2} \left[ \delta(f - f_0) + \delta(f + f_0) \right] \)
Proof
\( \sin(2 \pi f_0 t) \) \( \frac{1}{2j} \left[ \delta(f - f_0) - \delta(f + f_0) \right] \)
Proof
\( u(t) \) \( \frac{1}{j 2 \pi f} + \frac{1}{2} \delta(f) \)
\( e^{-a t} u(t) \), \( a > 0 \) \( \frac{1}{a + j 2 \pi f} \)
\( e^{a t} u(-t) \), \( a > 0 \) \( \frac{1}{a - j 2 \pi f} \)
\( \text{sinc}(t) = \frac{\sin(\pi t)}{\pi t} \) \( \text{rect}(f) \)
\( \text{rect}(t) \) \( \text{sinc}(f) \)
\( e^{-(t/T)^2} \) \( T \sqrt{\pi} e^{-\pi^2 f^2 T^2} \)
\( \frac{1}{\pi (t^2 + 1)} \) \( e^{-2 \pi |f|} \)
\( \text{tri}(t) \) \( \text{sinc}^2(f) \)
\( t \cdot e^{-a t} u(t) \) \( \frac{1}{(a + j 2 \pi f)^2} \)

This collection serves as a valuable resource for understanding how various signals behave in terms of frequency and has practical applications in signal processing.

And so forth.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Fourier Transforms

Known Transforms