Multiplicative Property of Pseudoprimes
Given an odd composite number \( n > 1 \), if \( n \) is a pseudoprime in bases \( b_1 \) and \( b_2 \), then it is also a pseudoprime in the product of the bases \( b_1b_2 \) as well as in the product of one base with the modular inverse of the other: \( b_1 b_2^{-1} \) and \( b_1^{-1} b_2 \).
This result highlights a fundamental property of pseudoprimes, closely tied to Fermat pseudoprimes.
It reveals an inherent multiplicative structure among pseudoprimes for certain bases.
Why is this useful?
This property provides a systematic way to construct new pseudoprimes from known ones.
A Practical Example
Let's consider an odd composite number greater than 1—say, 15.
$$ n=15 $$
Since 15 is composite, we can write it as \( 15 = 3 \cdot 5 \).
Now, let's identify bases \( b \) for which this number is a pseudoprime.
A number is a pseudoprime with respect to \( n=15 \) if it is relatively prime to \( n \) and satisfies \( b^{n-1} \equiv 1 \mod n \).
$$ b^{15-1} \equiv 1 \mod 15 $$
$$ b^{14} \equiv 1 \mod 15 $$
First, we list the integers relatively prime to 15:
$$ 1, 2, 4, 7, 8, 11, 13, 14 $$
Next, we check which of these satisfy the pseudoprime condition:
$$ 1^{14} \equiv 1 \mod 15 $$
$$ 2^{14} \equiv 4 \mod 15 $$
$$ 4^{14} \equiv 1 \mod 15 $$
$$ 7^{14} \equiv 4 \mod 15 $$
$$ 8^{14} \equiv 4 \mod 15 $$
$$ 11^{14} \equiv 1 \mod 15 $$
$$ 13^{14} \equiv 4 \mod 15 $$
$$ 14^{14} \equiv 1 \mod 15 $$
Thus, the pseudoprimes with respect to 15 are \( 1^{14}, 4^{14}, 11^{14}, 14^{14} \), corresponding to the bases 1, 4, 11, and 14.
A] The Product of the Bases
Now, let's check whether multiplying these bases together still results in a pseudoprime modulo 15.
$$ 1 \cdot 4 = 4 \equiv 1 \mod 15 $$
$$ 1 \cdot 11 = 11 \equiv 1 \mod 15 $$
$$ 1 \cdot 14 = 14 \equiv 1 \mod 15 $$
$$ 4 \cdot 11 = 44 \equiv 14 \mod 15 $$
$$ 4 \cdot 14 = 56 \equiv 11 \mod 15 $$
$$ 11 \cdot 14 = 154 \equiv 14 \mod 15 $$
We see that the products 1, 11, and 14 are also pseudoprimes modulo 15.
B] The Product of One Base with the Inverse of Another
Next, we determine whether multiplying a base by the modular inverse of another still results in a pseudoprime modulo 15.
First, we find the modular inverses of 1, 4, 11, and 14—numbers satisfying \( b b^{-1} \equiv 1 \mod 15 \).
$$ 1^{-1} = 1 \rightarrow 1 \cdot 1^{-1} = 1 \equiv 1 \mod 15 $$
$$ 4^{-1} = 4 \rightarrow 4 \cdot 4^{-1} = 16 \equiv 1 \mod 15 $$
$$ 11^{-1} = 11 \rightarrow 11 \cdot 11^{-1} = 121 \equiv 1 \mod 15 $$
$$ 14^{-1} = 14 \rightarrow 14 \cdot 14^{-1} = 196 \equiv 1 \mod 15 $$
Thus, the modular inverses of the bases are 1, 4, 11, and 14. Now, we verify the products:
$$ 1 \cdot 4^{-1} = 1 \cdot 4 \equiv 1 \mod 15 $$
$$ 1 \cdot 11^{-1} = 1 \cdot 11 \equiv 1 \mod 15 $$
$$ 1 \cdot 14^{-1} = 1 \cdot 14 \equiv 1 \mod 15 $$
$$ 4 \cdot 11^{-1} = 4 \cdot 11 = 44 \equiv 14 \mod 15 $$
$$ 4 \cdot 14^{-1} = 4 \cdot 14 = 56 \equiv 11 \mod 15 $$
$$ 11 \cdot 14^{-1} = 11 \cdot 14 = 154 \equiv 14 \mod 15 $$
As expected, these products also yield pseudoprimes modulo 15.
Proof
Let \( n \) be an odd composite number.
By assumption, \( n \) is a pseudoprime in bases \( b_1 \) and \( b_2 \), meaning:
$$ b_1^{n-1} \equiv 1 \pmod{n} $$
$$ b_2^{n-1} \equiv 1 \pmod{n} $$
Since \( n \) is pseudoprime for both bases, it follows that \( b_1 \) and \( b_2 \) are relatively prime to \( n \):
$$ \gcd(b_1, n) = 1 $$
$$ \gcd(b_2, n) = 1 $$
Now, we need to show that \( n \) is also a pseudoprime in bases \( b_1 b_2 \) and \( b_1 b_2^{-1} \), where \( b_2^{-1} \) is the modular inverse of \( b_2 \) modulo \( n \).
1] The Case of \( b_1b_2 \)
Using exponentiation rules:
$$ (b_1 b_2)^{n-1} = b_1^{n-1} \cdot b_2^{n-1} $$
Since both terms are congruent to 1, their product is also 1:
$$ (b_1 b_2)^{n-1} \equiv 1 \pmod{n} $$
Thus, \( n \) is pseudoprime in base \( b_1 b_2 \).
2] The Case of \( b_1b_2^{-1} \)
Applying exponentiation properties:
$$ (b_1 b_2^{-1})^{n-1} \equiv 1 \pmod{n} $$
This confirms that \( n \) is also a pseudoprime in base \( b_1 b_2^{-1} \).
Note: This result demonstrates a multiplicative structure in pseudoprimes, offering a method to generate new ones from existing examples.
