Sieve of Eratosthenes

The Sieve of Eratosthenes is a classic technique to identify prime numbers in a range of integers from 2 up to n.

How It Works

  1. Start by listing all numbers from 2 to n.
  2. Pick the first number (2).
  3. Cross out every multiple of 2 in the list.
  4. Move to the next remaining number (3).
  5. Cross out all multiples of 3.
  6. Repeat this process up to the square root of n, $ \sqrt{n} $.

When the algorithm finishes, only the prime numbers from 2 to n will be left on the list.

    A Practical Example

    Let's find the prime numbers up to 100.

    First, list the numbers from 2 to 100 in a table.

      2 3 4 5 6 7 8 9 10
    11 12 13 14 15 16 17 18 19 20
    21 22 23 24 25 26 27 28 29 30
    31 32 33 34 35 36 37 38 39 40
    41 42 43 44 45 46 47 48 49 50
    51 52 53 54 55 56 57 58 59 60
    61 62 63 64 65 66 67 68 69 70
    71 72 73 74 75 76 77 78 79 80
    81 82 83 84 85 86 87 88 89 90
    91 92 93 94 95 96 97 98 99 100

    Note: The number 1 is excluded because 1 is not considered a prime, as it lacks a unique factorization. For example, we can represent 1 in various ways as $$ 1 = 1^1=1^2=1^3 ... $$ A prime number, by definition, is divisible only by 1 and itself and has a unique factorization, no matter the order of factors.

    To find the primes from 1 to 100, we only need to cross out the multiples of integers from 2 up to the square root of n=100, $ \sqrt{100}=10 $, so numbers from 2 to 10.

    Start with 2 and cross out all its multiples.

      2 3   5   7   9  
    11   13   15   17   19  
    21   23   25   27   29  
    31   33   35   37   39  
    41   43   45   47   49  
    51   53   55   57   59  
    61   63   65   67   69  
    71   73   75   77   79  
    81   83   85   87   89  
    91   93   95   97   99  

    Then, select 3 and cross out all its remaining multiples.

      2 3   5   7      
    11   13       17   19  
        23   25       29  
    31       35   37      
    41   43       47   49  
        53   55       59  
    61       65   67      
    71   73       77   79  
        83   85       89  
    91       95   97      

    Since 4 has already been crossed out, we know it’s not a prime number, so we can skip it.

    Now move to 5, select it, and cross out all multiples of 5.

      2 3   5   7      
    11   13       17   19  
        23           29  
    31           37      
    41   43       47   49  
        53           59  
    61           67      
    71   73       77   79  
        83           89  
    91           97      

    Finally, select 7 and cross out all its multiples.

      2 3   5   7      
    11   13       17   19  
        23           29  
    31           37      
    41   43       47      
        53           59  
    61           67      
    71   73           79  
        83           89  
                97      

    There are no more numbers less than 10 left to check, so the algorithm ends here.

    The remaining numbers in the table are the prime numbers from 2 to 100.

    And that’s how it works.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Prime Numbers

    FAQ