Binet's Theorem

Statement of Binet's Theorem

The determinant of the product of two square matrices, det(AB), is equal to the product of their determinants: $$ \det(A \cdot B) = \det(A) \cdot \det(B) $$

Let’s take two square matrices of the same order as an example:

$$ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$

$$ B = \begin{pmatrix} 2 & 4 \\ 1 & 6 \end{pmatrix} $$

Their product is:

$$ AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\ 1 & 6 \end{pmatrix} $$

Expanding the multiplication:

$$ AB = \begin{pmatrix} (1 \cdot 2 + 2 \cdot 1) & (1 \cdot 4 + 2 \cdot 6) \\ (3 \cdot 2 + 4 \cdot 1) & (3 \cdot 4 + 4 \cdot 6) \end{pmatrix} $$

$$ AB = \begin{pmatrix} 2 + 2 & 4 + 12 \\ 6 + 4 & 12 + 24 \end{pmatrix} $$

$$ AB = \begin{pmatrix} 4 & 16 \\ 10 & 36 \end{pmatrix} $$

Now, calculating the determinant of the product:

$$ \det(AB) = \begin{vmatrix} 4 & 16 \\ 10 & 36 \end{vmatrix} = 4 \cdot 36 - 16 \cdot 10 = 144 - 160 = -16 $$

Next, let's compute the determinants of A and B separately:

$$ \det(A) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2 $$

$$ \det(B) = \begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix} = 2 \cdot 6 - 4 \cdot 1 = 12 - 4 = 8 $$

Multiplying the two determinants:

$$ \det(A) \cdot \det(B) = -2 \cdot 8 = -16 $$

Since both calculations yield the same result, we confirm that:

$$ \det(AB) = \det(A) \cdot \det(B) = -2 \cdot 8 = -16 $$

This verifies Binet's theorem. 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Matrix Determinant

Online Tool

Exercises