Exercises on Solving Linear Systems Using Row-Echelon Form

The following examples illustrate how to solve linear systems by reducing their augmented matrices to row-echelon form. Each step is shown explicitly to highlight the underlying algebraic structure.

Exercise 1

Consider the system

$$ \begin{cases} x - y = 3 \\ x + y = 9 \end{cases} $$

To solve it, I rewrite the system as an augmented matrix and then reduce it to row-echelon form.

$$ A|B = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 1 & 9 \end{pmatrix} $$

The first two columns form the coefficient matrix A.

$$ A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} $$

The last column is the vector of constant terms B.

$$ B = \begin{pmatrix} 3 \\ 9 \end{pmatrix} $$

I now carry out row operations to bring the matrix into row-echelon form. I subtract the first row from the second:

$$ R2 = R2 - R1 $$

$$ A|B = \begin{pmatrix} 1 & -1 & 3 \\ 1-1 & 1 - (-1) & 9 - 3 \end{pmatrix} $$

$$ A|B = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & 6 \end{pmatrix} $$

The matrix is now in row-echelon form. Translating it back into equations gives

$$ \begin{cases} x - y = 3 \\ 2y = 6 \end{cases} $$

which immediately yields

$$ y = 3. $$

Substituting this into the first equation,

$$ x - 3 = 3 $$

gives

$$ x = 6. $$

The solution to the system is therefore x = 6 and y = 3.

Exercise 2

Now consider the system

$$ \begin{cases} 2x - 5y = 7 \\ x - 3y = 1 \end{cases} $$

I proceed as before by writing its augmented matrix:

$$ A|B = \begin{pmatrix} 2 & -5 & 7 \\ 1 & -3 & 1 \end{pmatrix} $$

The coefficient matrix A is

$$ A = \begin{pmatrix} 2 & -5 \\ 1 & -3 \end{pmatrix} $$

and the vector of constant terms is

$$ B = \begin{pmatrix} 7 \\ 1 \end{pmatrix} $$

To simplify the reduction, I swap the two rows so that the leading coefficient in the first row is 1:

$$ R1 \Leftrightarrow R2 $$

$$ A|B = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -5 & 7 \end{pmatrix} $$

I then eliminate the entry beneath the leading 1 by adding -2 times the first row to the second:

$$ R2 = R2 + R1 \cdot (-2) $$

$$ A|B = \begin{pmatrix} 1 & -3 & 1 \\ 2 - 2 & -5 + 6 & 7 - 2 \end{pmatrix} $$

$$ A|B = \begin{pmatrix} 1 & -3 & 1 \\ 0 & 1 & 5 \end{pmatrix} $$

This is row-echelon form, so the system becomes

$$ \begin{cases} x - 3y = 1 \\ y = 5 \end{cases} $$

The second equation gives y immediately. Substituting y = 5 into the first equation,

$$ x - 3 \cdot 5 = 1 $$

leads to

$$ x = 16. $$

The solution to the system is therefore x = 16 and y = 5.

Exercise 3

I now examine the following homogeneous linear system:

$$ \begin{cases} x_1 + 3x_3 - 3x_4 = 0 \\ 2x_2 -4x_3 +4x_4 = 0 \\ -x_1 + x_2 -5x_3 + x_4 = 0 \\ 2x_1 + x_2 + 4x_3 + 4x_4 = 0 \end{cases} $$

To solve it, I apply Gaussian elimination to reduce the augmented matrix to row-echelon form.

The augmented matrix is

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 2 & -4 & 4 & 0 \\ -1 & 1 & -5 & 1 & 0 \\ 2 & 1 & 4 & 4 & 0 \end{pmatrix} $$

I begin by eliminating the entry in the first column of the third row:

R3 = R3 + R1

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 2 & -4 & 4 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 2 & 1 & 4 & 4 & 0 \end{pmatrix} $$

I continue by clearing the first column of the fourth row:

R4 = R4 - 2R1

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 2 & -4 & 4 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 1 & -2 & 10 & 0 \end{pmatrix} $$

Next I eliminate the second-column entry in the second row using the fourth row:

R2 = R2 - 2R4

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & -16 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 1 & -2 & 10 & 0 \end{pmatrix} $$

I then eliminate the entry beneath the pivot in the second column:

R4 = R4 - R3

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & -16 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 0 & 0 & 12 & 0 \end{pmatrix} $$

To place the pivot row in the proper position, I swap rows 2 and 3:

R2 ⇔ R3

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 0 & 0 & -16 & 0 \\ 0 & 0 & 0 & 12 & 0 \end{pmatrix} $$

I scale the third row to make the pivot more evident:

R3 = 3R3

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 0 & 0 & -48 & 0 \\ 0 & 0 & 0 & 12 & 0 \end{pmatrix} $$

I also scale the fourth row for consistency:

R4 = 4R4

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 0 & 0 & -48 & 0 \\ 0 & 0 & 0 & 48 & 0 \end{pmatrix} $$

I add the third row to the fourth to eliminate the pivot entry:

R4 = R4 + R3

$$ A|B = \begin{pmatrix} 1 & 0 & 3 & -3 & 0 \\ 0 & 1 & -2 & -2 & 0 \\ 0 & 0 & 0 & -48 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $$

The matrix is now in row-echelon form.

Note. The absence of a pivot in the third column shows that \(x_3\) is a free variable. The pivot positions occur in three rows, so the rank is \(r = 3\).

Since the system has four variables (\(n = 4\)), the Rouché - Capelli theorem implies that the solution set has dimension \(n - r = 1\), so there are infinitely many solutions.

$$ \infty^{n-r} = \infty^{4-3} = \infty $$

Translating the row-echelon matrix back into equations gives

$$ \begin{cases} x_1 + 3x_3 - 3x_4 = 0 \\ x_2 - 2x_3 - 2x_4 = 0 \\ -48x_4 = 0 \end{cases} $$

From the last equation I obtain \(x_4 = 0\). Substituting into the first two equations yields

$$ \begin{cases} x_1 + 3x_3 = 0 \\ x_2 - 2x_3 = 0 \\ x_4 = 0 \end{cases} $$

I now solve for \(x_1\) and \(x_2\):

$$ \begin{cases} x_1 = -3x_3 \\ x_2 = 2x_3 \\ x_4 = 0 \end{cases} $$

The variable \(x_3\) is free and may take any real value. Let \(x_3 = k\).

The general solution is therefore

$$ \begin{cases} x_1 = -3k \\ x_2 = 2k \\ x_4 = 0 \\ x_3 = k \end{cases} $$

This describes a one-parameter family of solutions, one for each real value of \(k\).

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Row Echelon Systems

Worked Examples