Angle Between Two Vectors

To find the angle between two vectors, I employ the formula that leverages the arccosine. It's based on the ratio of the vectors' dot product to the multiplication of their magnitudes. $$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

Example

To illustrate, let me walk you through a practical example:

I'm given two vectors:

$$ \vec{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} $$

$$ \vec{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} $$

When I visualize these vectors, they lie on a plane.

two vectors on the plane

To find the angle between them, I apply the formula:

$$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

First, I calculate the dot product:

$$ \vec{v} \cdot \vec{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 1 \cdot 4 + 3 \cdot 2 = 4+6= 10$$

Plugging this into the formula:

$$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

$$ \alpha = \arccos ( \frac{10}{ |\vec{v}| \cdot |\vec{w}|} )$$

Next, I determine the magnitudes using the Pythagorean theorem.

$$ |\vec{v}| = \sqrt{3^2+1^2} = \sqrt{10} $$

$$ |\vec{w}| = \sqrt{4^2+2^2} = \sqrt{20} $$

Substituting these magnitudes in:

$$ \alpha = \arccos ( \frac{10}{ |\vec{v}| \cdot |\vec{w}|} )$$

$$ \alpha = \arccos ( \frac{10}{ \sqrt{10} \cdot \sqrt{20}} )$$

$$ \alpha = \arccos ( \frac{10}{ \sqrt{200} } )$$

$$ \alpha = \arccos ( 0,71 )$$

From this, I deduce:

$$ \alpha = 45° $$

So, the angle between these two vectors is 45°.

the angle between the vectors

Proof

For those interested in the underlying proof.

The dot product of two vectors is the product of their magnitudes and the cosine of the angle between them.

$$ \vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot \cos \alpha $$

From this relationship, I can isolate the cosine of angle α.

$$ \cos \alpha = \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } $$

Taking the arccosine of both sides.

$$ \arccos( \cos \alpha ) = \arccos( \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } ) $$

Since the arccosine is the inverse function of cosine, the arccosine of the cosine of α gives me angle α.

$$ \alpha = \arccos( \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } ) $$

This confirms the formula I use to calculate the angle between two vectors.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Dot Product