Angle Between Two Vectors

To find the angle between two vectors, I employ the formula that leverages the arccosine. It's based on the ratio of the vectors' dot product to the multiplication of their magnitudes. $$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

This formula holds true regardless of the quadrant in which the vectors lie.

It always returns the smallest angle between the two vectors, ranging from 0° to 180°, regardless of their orientation in the plane.

Example

To illustrate, let me walk you through a practical example:

I'm given two vectors:

$$ \vec{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} $$

$$ \vec{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} $$

When I visualize these vectors, they lie on a plane.

two vectors on the plane

To find the angle between them, I apply the formula:

$$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

First, I calculate the dot product:

$$ \vec{v} \cdot \vec{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 1 \cdot 4 + 3 \cdot 2 = 4+6= 10$$

Plugging this into the formula:

$$ \alpha = \arccos ( \frac{\vec{v} \cdot \vec{w}}{ |\vec{v}| \cdot |\vec{w}|} )$$

$$ \alpha = \arccos ( \frac{10}{ |\vec{v}| \cdot |\vec{w}|} )$$

Next, I determine the magnitudes using the Pythagorean theorem.

$$ |\vec{v}| = \sqrt{3^2+1^2} = \sqrt{10} $$

$$ |\vec{w}| = \sqrt{4^2+2^2} = \sqrt{20} $$

Substituting these magnitudes in:

$$ \alpha = \arccos ( \frac{10}{ |\vec{v}| \cdot |\vec{w}|} )$$

$$ \alpha = \arccos ( \frac{10}{ \sqrt{10} \cdot \sqrt{20}} )$$

$$ \alpha = \arccos ( \frac{10}{ \sqrt{200} } )$$

$$ \alpha = \arccos ( 0,71 )$$

From this, I deduce:

$$ \alpha = 45° $$

So, the angle between these two vectors is 45°.

the angle between the vectors

Example 2

Let’s now consider two vectors located in different quadrants:

$$ \vec{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \text{(first quadrant)} $$

$$ \vec{w} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \quad \text{(second quadrant)} $$

Their dot product is:

$$ \vec{v} \cdot \vec{w} = 2 \cdot (-1) + 1 \cdot 3 = -2 + 3 = 1 $$

The magnitudes are:

$$ |\vec{v}| = \sqrt{2^2 + 1^2} = \sqrt{5} $$

$$ |\vec{w}| = \sqrt{(-1)^2 + 3^2} = \sqrt{10} $$

So the angle between the vectors is:

$$ \alpha = \arccos \left( \frac{1}{\sqrt{5} \cdot \sqrt{10}} \right) = \arccos \left( \frac{1}{\sqrt{50}} \right) \approx \arccos(0.141) \approx 81.87^\circ $$

The resulting angle is approximately 81.87°:

$$ \alpha \approx 81.87^\circ $$

Although the vectors are in different quadrants - affecting the signs of their components - the formula still yields the correct (unsigned) angle between them, always within the range of 0° to 180°. Since it’s not a directed angle, it cannot be 270°.

example with vectors in different quadrants

Proof

For those interested in the underlying proof.

The dot product of two vectors is the product of their magnitudes and the cosine of the angle between them.

$$ \vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot \cos \alpha $$

From this relationship, I can isolate the cosine of angle α.

$$ \cos \alpha = \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } $$

Taking the arccosine of both sides.

$$ \arccos( \cos \alpha ) = \arccos( \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } ) $$

Since the arccosine is the inverse function of cosine, the arccosine of the cosine of α gives me angle α.

$$ \alpha = \arccos( \frac{ \vec{v} \cdot \vec{w} }{|\vec{v}| \cdot |\vec{w}| } ) $$

This confirms the formula I use to calculate the angle between two vectors.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Dot Product