Polynomial Factorization

Here are some common techniques for factoring polynomials in practice.

Factoring Out Common Terms

Complete factoring

$$ ax^3 + bx^2 + cx = x (ax^2 + bx + c) $$

Partial factoring

$$ ax + ay + bx + by = a(x+y) + b(x+y) = (a+b)(x+y) $$

Special Products

Square of a binomial

$$ (a+b)^2 = a^2 + 2ab + b^2 $$

Cube of a binomial

$$ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $$

Square of a trinomial

$$ (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc $$

Difference of squares

$$ a^2 - b^2 = (a+b)(a-b) $$

Sum of cubes

$$ a^3 + b^3 = (a+b)(a^2 - ab + b^2) $$

Difference of cubes

$$ a^3 - b^3 = (a-b)(a^2 + ab + b^2) $$

Special Trinomials

$$ x^2 + sx + p = (x+a)(x+b) \quad \text{where } s=a+b, \ p=ab $$

$$ ax^2 + bx + c = ax^2 + px + qx + c \quad \text{where } b=p+q, \ c=pq $$

Change of Variable

$$ ax^4 + bx^2 + c = at^2 + bt + c \quad \text{with } t = x^2 $$

Ruffini’s Rule (Synthetic Division)

$$ P(x) = (x-x_1) \cdot Q(x) $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Algebra