Differential Equation Exercise 17
We want to solve the following first-order differential equation:
$$ xy' + 2y = x $$
Applying the invariance property, we divide through by \( x \):
$$ \frac{xy' + 2y}{x} = \frac{x}{x} $$
$$ \frac{xy'}{x} + \frac{2y}{x} = 1 $$
$$ y' + \frac{2y}{x} = 1 $$
This is now in the form of a linear differential equation:
\( y' + a(x)\,y = b(x) \), where \( a(x) = \frac{2}{x} \) and \( b(x) = 1 \).
We can solve this using the method of variation of constants:
$$ y = e^{-\int a(x) \, dx} \left[ \int b(x) \, e^{\int a(x) \, dx} \, dx + c \right] $$
Substituting \( a(x) = \frac{2}{x} \) and \( b(x) = 1 \):
$$ y = e^{-\int \frac{2}{x} \, dx} \left[ \int e^{\int \frac{2}{x} \, dx} \, dx + c \right] $$
$$ y = e^{-2 \int \frac{1}{x} \, dx} \left[ \int e^{2 \int \frac{1}{x} \, dx} \, dx + c \right] $$
Since \( \int \frac{1}{x} \, dx = \log x \), this becomes:
$$ y = e^{-2 \log x} \left[ \int e^{2 \log x} \, dx + c \right] $$
Using \( e^{\log x} = x \):
$$ y = x^{-2} \left[ \int x^2 \, dx + c \right] $$
The integral \( \int x^2 \, dx \) is \( \frac{x^3}{3} \):
$$ y = x^{-2} \left[ \frac{x^3}{3} + c \right] $$
Distributing \( x^{-2} \):
$$ y = \frac{x}{3} + c \, x^{-2} $$
This is the general solution of the differential equation.
