Solved Exercises on Differential Equations
A collection of worked-out exercises involving first- and second-order differential equations.
First-Order Differential Equations
| Exercise |
$$ y' + 1 = 0 $$ |
| Exercise | $$ y' + y = 0 $$ |
| Exercise | $$ y' + y = x $$ |
| Exercise | $$ y' + 2x = 0 $$ |
| Exercise | $$ y' + y = 1 $$ |
| Exercise |
$$ xy' + y = 0 $$ |
| Exercise |
$$ xy' - y = 0 $$ |
| Exercise |
$$ y' + xy = 0 $$ |
| Exercise | $$ y' + xy + x = 0 $$ |
| Exercise | $$ y' + 2xy = 0 $$ |
| Exercise | $$ y' + y \cdot \sin x = 0 $$ |
| Exercise | $$ xy' + 2y = x $$ |
| Exercise |
$$ 2yy' - x^2 = 0 $$ |
| Exercise | $$ 3y^2 \cdot y' + x = 0 $$ |
| Exercise | $$ y' + y \cos x = \cos x $$ |
| Exercise | $$ 2x (y^2 + 1) - y' = 0 $$ |
| Exercise | $$ xyy' = 2x^2 + y^2 $$ |
| Exercise | $$ 2xyy' = x^2 + 2y^2 $$ |
| Exercise | $$ y' - x \cdot \cos x = 0 $$ |
| Exercise | $$ x^2 y' = xy + y^2 $$ |
| Exercise | $$ 3y^2 y' = x + 1 $$ |
| Exercise | $$ yy' - 3x^2 = 2 $$ |
| Exercise |
$$ y' = - \frac{1 + y}{x^2} $$ |
| Exercise | $$ y' + \frac{y}{x} = \frac{\sin x}{x} $$ |
| Exercise |
$$ \begin{cases} y' = y - 1 \\ \\ y(0) = 7 \end{cases} $$ |
| Exercise | $$ \begin{cases} y' = \cos^2 y \\ \\ y(0) = 0 \end{cases} $$ |
| Exercise | $$ \begin{cases} y' - x^2 = 0 \\ x = 4 \\ y = \frac{1}{4} \end{cases} $$ |
| Exercise | $$ \begin{cases} y' = y^2 \cdot x^3 \\ \\ y(0) = 7 \end{cases} $$ |
| Exercise | $$ \begin{cases} y' = y^2 \cdot t^3 \\ \\ y(0) = 0 \end{cases} $$ |
| Exercise | $$ \begin{cases} y' = \frac{-t}{y} \\ \\ y(0) = 5 \end{cases} $$ |
Second-Order Differential Equations
| Exercise |
$$ y'' = \cos(x) $$ |
| Exercise |
$$ y'' = 6x + 2 $$ |
| Exercise | $$ y'' - y = 0 $$ |
| Exercise | $$ xy'' = 1 $$ |
| Exercise | $$ y'' - y' - 6y = 0 $$ |
| Exercise | $$ y'' - 5y' + 6y = 0 $$ |
| Exercise | $$ y'' + 4y' + 4y = 0 $$ |
| Exercise | $$ y'' - 2y' + y = 0 $$ |
| Exercise | $$ y'' - 2y' + 2y = 0 $$ |
| Exercise | $$ y'' + 2y' + 3y = 0 $$ |
| Exercise |
$$ y'' + 4y = 0 $$ |
| Exercise | $$ y'' + y = 0 $$ |
| Exercise | $$ \begin{cases} y'' + 6y' + 8y = 0 \\ y(0) = -2 \\ y'(0) = 1 \end{cases} $$ |
Second-Order Nonhomogeneous Differential Equations
| Exercise |
$$ y'' - y' = 3 $$ |
| Exercise |
$$ y'' + y = x^2 $$ |
| Exercise | $$ y'' - 2y' - 3y = e^{4x} $$ |
| Exercise | $$ y'' + 4y' + 13y = \sin(3x) $$ |
| Exercise | $$ y'' - 2y' + y = 6x e^x $$ |
| Exercise |
$$ y'' - y = 2x \sin(x) $$ |
| Exercise | $$ y'' - y' = x $$ |
| Exercise | $$ y'' + 3y = x + 2\cos(x) $$ |
