Wronskian Method

Wronskian Method for Second-Order Differential Equations

The Wronskian method is a technique used to find a particular solution to a non-homogeneous second-order differential equation of the form: $$ y'' + a(x)y' + b(x)y = f(x) $$

Given such an equation, if the corresponding homogeneous equation has a general solution of the form:

$$ y_o = c_1 v_1(x) + c_2 v_2(x) $$

then a particular solution to the non-homogeneous equation can be written as:

$$ y_p = c_1(x) v_1(x) + c_2(x) v_2(x) $$

where \( c_1(x) \) and \( c_2(x) \) are functions defined by the integrals:

$$ c_1(x) = - \int v_2(x) \frac{f(x)}{W(x)} \, dx $$

$$ c_2(x) = \int v_1(x) \frac{f(x)}{W(x)} \, dx $$

The function \( W(x) \) in the denominator is called the Wronskian and is computed as:

$$ W(x) = v_1(x) v_2'(x) - v_2(x) v_1'(x) $$

Note. The Wronskian arises from the system: $$ \begin{cases} c_1'(x) v_1 + c_2'(x) v_2 = 0 \\ \\ c_1'(x) v_1' + c_2'(x) v_2' = f(x) \end{cases} $$ The corresponding coefficient matrix is: $$ \begin{pmatrix} v_1 & v_2 \\ v_1' & v_2' \end{pmatrix} $$ and the Wronskian is its determinant: $$ W(x) = v_1(x) v_2'(x) - v_2(x) v_1'(x) $$

    A Worked Example

    Consider the non-homogeneous second-order differential equation:

    $$ y'' - 2y' - 3y = \frac{4x - 1}{x^2} e^{3x} $$

    The general solution to the associated homogeneous equation is:

    $$ y_o = c_1 e^{-x} + c_2 e^{3x} $$

    Note. The corresponding homogeneous equation is: $$ y'' - 2y' - 3y = 0 $$ Solving the characteristic equation: $$ z^2 - 2z - 3 = 0 $$ yields two distinct roots: $$ z = \frac{2 \pm \sqrt{(-2)^2 + 4 \cdot 3}}{2} = \begin{cases} z_1 = -1 \\ \\ z_2 = 3 \end{cases} $$ Hence, the general solution to the homogeneous equation is: $$ y_o = c_1 e^{-x} + c_2 e^{3x} $$

    We now look for a particular solution of the form:

    $$ y_p = c_1(x) v_1(x) + c_2(x) v_2(x) $$

    where \( v_1 = e^{-x} \) and \( v_2 = e^{3x} \), as derived from the homogeneous solution:

    $$ y_p = c_1(x) e^{-x} + c_2(x) e^{3x} $$

    The functions \( c_1(x) \) and \( c_2(x) \) are computed using:

    $$ \begin{cases} c_1(x) = - \int e^{3x} \cdot \frac{f(x)}{W(x)} \, dx \\ \\ c_2(x) = \int e^{-x} \cdot \frac{f(x)}{W(x)} \, dx \end{cases} $$

    To evaluate these integrals, we first compute the Wronskian:

    $$ W(x) = e^{-x} \cdot \frac{d}{dx} e^{3x} - e^{3x} \cdot \frac{d}{dx} e^{-x} $$

    $$ W(x) = e^{-x} \cdot 3e^{3x} + e^{3x} \cdot e^{-x} = 3e^{2x} + e^{2x} = 4e^{2x} $$

    Substituting this expression into the formulas for \( c_1(x) \) and \( c_2(x) \):

    $$ \begin{cases} c_1(x) = - \int \frac{4x - 1}{4x^2} e^{4x} \, dx \\ \\ c_2(x) = - \int \frac{4x - 1}{4x^2} \, dx \end{cases} $$

    Carrying out the integrations yields:

    $$ \begin{cases} c_1(x) = -\frac{e^{4x}}{4x} \\ \\ c_2(x) = -\left( \frac{1}{4x} + \log|x| \right) \end{cases} $$

    Substituting these into the expression for the particular solution gives:

    $$ y_p = c_1(x) e^{-x} + c_2(x) e^{3x} $$

    $$ y_p = -\frac{e^{3x}}{4x} + \left( \frac{1}{4x} + \log|x| \right) e^{3x} $$

    $$ y_p = e^{3x} \log|x| $$

    Thus, the general solution to the original non-homogeneous equation is:

    $$ y = y_o + y_p = c_1 e^{-x} + c_2 e^{3x} + e^{3x} \log|x| $$

    where \( c_1 \) and \( c_2 \) are arbitrary real constants.

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Differential Equations

    First-Order Differential Equations

    Second-Order Differential Equations

    Higher-Order Linear Equations

    Examples and Practice Problems

    Theory

    Approximate Solutions