Differential Equations Exercise 26

We want to solve the following differential equation:

$$ \begin{cases} y''+6y'+8y = 0 \\ y(0)=-2 \\ y'(0)=1 \end{cases} $$

This is a second-order homogeneous differential equation with two initial conditions (a Cauchy problem).

To begin, we form the characteristic equation using the auxiliary variable $z$:

$$ z^2+6z+8=0 $$

$$ z = \frac{-6 \pm \sqrt{36-32}}{2} = \frac{-6 \pm 2}{2} = \begin{cases} z=\frac{-6-2}{2}=-4 \\ \\z=\frac{-6+2}{2}=-2 \end{cases} $$

The characteristic polynomial has two distinct real roots: $z_1=-4$ and $z_2=-2$.

Therefore, the general solution of the differential equation is:

$$ y = c_1 e^{-4x} + c_2 e^{-2x} $$

Differentiating, we obtain:

$$ y' = -4c_1 e^{-4x} - 2c_2 e^{-2x} $$

This gives us the system:

$$ \begin{cases} y = c_1 e^{-4x} + c_2 e^{-2x} \\ \\ y' = -4 c_1 e^{-4x} - 2 c_2 e^{-2x} \end{cases} $$

Now we apply the initial conditions $x=0,\, y=-2,\, y'=1$ to the general solution:

$$ \begin{cases} -2 = c_1 e^0 + c_2 e^0 \\ \\ 1 = -4 c_1 e^0 - 2 c_2 e^0 \end{cases} $$

which simplifies to:

$$ \begin{cases} -2 = c_1 + c_2 \\ \\ 1 = -4c_1 - 2c_2 \end{cases} $$

We solve this system by substitution:

$$ \begin{cases} c_1 =-2-c_2 \\ \\ 1 = -4(-2-c_2) - 2c_2 \end{cases} $$

$$ \begin{cases} c_1 =-2-c_2 \\ \\ 1 = 8 + 4c_2 - 2c_2 \end{cases} $$

$$ \begin{cases} c_1 =-2-c_2 \\ \\ -7 = 2c_2 \end{cases} $$

$$ \begin{cases} c_1 =-2-c_2 \\ \\ c_2 = -\tfrac{7}{2} \end{cases} $$

$$ \begin{cases} c_1 = -2 - \left(-\tfrac{7}{2}\right) \\ \\ c_2 = -\tfrac{7}{2} \end{cases} $$

$$ \begin{cases} c_1 = \tfrac{-4+7}{2} \\ \\ c_2 = -\tfrac{7}{2} \end{cases} $$

$$ \begin{cases} c_1 = \tfrac{3}{2} \\ \\ c_2 = -\tfrac{7}{2} \end{cases} $$

Having determined the constants $c_1 = \tfrac{3}{2}$ and $c_2 = -\tfrac{7}{2}$, we substitute them back into the general solution:

$$ y = \tfrac{3}{2} e^{-4x} - \tfrac{7}{2} e^{-2x} $$

This is the unique solution to the given Cauchy problem.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Differential Equations

First-Order Differential Equations

Second-Order Differential Equations

Higher-Order Linear Equations

Examples and Practice Problems

Theory

Approximate Solutions