Exercise: Computing the Inverse of a Matrix (1)

We want to find the inverse of the following matrix:

$$ A = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} $$

To do this, we apply the Gauss - Jordan elimination method.

We start by writing the identity matrix I alongside A:

$$ A | I = \begin{pmatrix} 4 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0\\ 0 & 1 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 &| & 0 & 0 & 0 & 1 \end{pmatrix} $$

We now perform elementary row operations to transform the left block into the identity matrix.

First, divide the first row by 4 (R1 → R1·1/4):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0\\ 0 & 1 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 &| & 0 & 0 & 0 & 1 \end{pmatrix} $$

Next, swap the second and third rows (R2 ↔ R3):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 &| & 0 & 0 & 0 & 1 \end{pmatrix} $$

Subtract the third row from the second (R2 → R2 − R3):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 &| & 0 & 0 & 0 & 1 \end{pmatrix} $$

Subtract the first row from the fourth (R4 → R4 − R1):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 &| & -\tfrac{1}{4} & 0 & 0 & 1 \end{pmatrix} $$

Subtract the second row from the fourth (R4 → R4 − R2):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 &| & -\tfrac{1}{4} & 1 & -1 & 1 \end{pmatrix} $$

Finally, divide the third row by 2 (R3 → R3·1/2):

$$ A | I = \begin{pmatrix} 1 & 0 & 0 & 0 & | & \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & | & 0 & \tfrac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 &| & -\tfrac{1}{4} & 1 & -1 & 1 \end{pmatrix} $$

At this point, the left block has been reduced to the identity matrix I.

The block on the right is therefore the inverse of A:

$$ A^{-1} = \begin{pmatrix} \tfrac{1}{4} & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & \tfrac{1}{2} & 0 & 0 \\ -\tfrac{1}{4} & 1 & -1 & 1 \end{pmatrix} $$

This completes the computation.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Inverse Matrix

Exercises

Tools

FAQ