Euler's Criterion

Let \( p \) be an odd prime, and let \( a \) be an integer not divisible by \( p \), meaning \( a \) and \( p \) are coprime (\( \gcd(a, p) = 1 \)). Euler’s criterion states that: \[ \left( \frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p} \] where \( \left( \frac{a}{p} \right) \) represents the Legendre symbol.

By computing \( a^{\frac{p-1}{2}} \pmod{p} \), we can determine whether \( a \) is a quadratic residue modulo \( p \).

  • If \( \left( \frac{a}{p} \right) = +1 \), then \( a \) is a quadratic residue modulo \( p \).
  • If \( \left( \frac{a}{p} \right) = -1 \), then \( a \) is not a quadratic residue modulo \( p \).

Simplified Form for \( a = 2 \)

When checking whether \( a = 2 \) is a quadratic residue, Euler’s criterion simplifies to:

\[ \left( \frac{2}{p} \right) = (-1)^{\frac{p^2 - 1}{8}} \]

This formula determines whether 2 is a quadratic residue modulo an odd prime \( p \).

Why is Euler’s criterion important? It has many applications in mathematics, particularly in number theory, cryptography, and primality testing. One key application is in the Solovay-Strassen primality test.

A Practical Example

Let’s determine whether \( a = 4 \) is a quadratic residue modulo \( p = 7 \).

Using Euler’s criterion:

\[ \left( \frac{4}{7} \right) \equiv 4^{\frac{7-1}{2}} \pmod{7} \]

\[ \left( \frac{4}{7} \right) \equiv 4^3 \pmod{7} \]

\[ \left( \frac{4}{7} \right) \equiv 64 \pmod{7} \]

\[ \left( \frac{4}{7} \right) \equiv 1 \pmod{7} \]

Since the result is \( 1 \), we conclude that \( 4 \) is a quadratic residue modulo \( 7 \). This means there exists an integer \( x = 2 \) such that:

\[ 2^2 \equiv 4 \pmod{7} \]

Verification. To confirm this result, we compute all quadratic residues modulo \( p = 7 \) and check if 4 appears in the list.

  • \( 0^2 = 0 \equiv 0 \pmod{7} \)
  • \( 1^2 = 1 \equiv 1 \pmod{7} \)
  • \( 2^2 = 4 \equiv 4 \pmod{7} \)
  • \( 3^2 = 9 \equiv 2 \pmod{7} \)
  • \( 4^2 = 16 \equiv 2 \pmod{7} \)
  • \( 5^2 = 25 \equiv 4 \pmod{7} \)
  • \( 6^2 = 36 \equiv 1 \pmod{7} \)

The quadratic residues modulo \( 7 \) are 0, 1, 2, and 4. This confirms that \( 4 \) is indeed a quadratic residue modulo 7.

Example 2

Now, let's check whether \( a = 3 \) is a quadratic residue modulo \( p = 7 \).

Using Euler’s criterion:

\[ \left( \frac{3}{7} \right) \equiv 3^{\frac{7-1}{2}} \pmod{7} \]

\[ \left( \frac{3}{7} \right) \equiv 3^3 \pmod{7} \]

\[ \left( \frac{3}{7} \right) \equiv 27 \pmod{7} \]

\[ \left( \frac{3}{7} \right) \equiv 6 \pmod{7} \]

Since \( 6 \equiv -1 \pmod{7} \), we obtain:

\[ \left( \frac{3}{7} \right) \equiv -1 \pmod{7} \]

Since the result is \( -1 \), we conclude that \( 3 \) is not a quadratic residue modulo \( 7 \).

Key Properties of Euler’s Criterion

Euler’s criterion has several important properties:

  • Multiplicativity of the Legendre Symbol
    If \( a \) and \( b \) are integers, then: \[ \left( \frac{a \cdot b}{p} \right) = \left( \frac{a}{p} \right) \cdot \left( \frac{b}{p} \right). \]
  • Connection to Fermat’s Little Theorem
    By Fermat’s Little Theorem: \[ a^{p-1} \equiv 1 \pmod{p} \] Since Euler’s criterion involves the exponent \( \frac{p-1}{2} \), it leverages this property to determine quadratic residues.

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Discrete Mathematics

Tools