Modular Exponentiation Calculator
This online tool computes modular exponentiation of the form \( \text{base}^{\text{exponent}} \mod n \).
Compute the power modulo N
Example
To compute the modular exponentiation \( 9^{10} \mod 7 \):
1] Convert the exponent to binary: \( (10)_2 = 1010 \).
2] Construct the table using the formula \( c_i = c_{i-1}^2 \cdot \text{base}^{\text{bit}} \), reading the binary number from left to right, starting with \( c_0=1 \). In this example, the base is 9 and the modulus is 7.
$ (10)_2 $ | $ c_0 = 1 $ |
---|---|
1 | $ c_1 \equiv (1^2 \cdot 9^1) \mod 7 $ = $ \color{red}2 $ |
0 | $ c_2 \equiv (\color{red}{2}^2 \cdot 9^0) \mod 7 $ = $ \color{blue}4 $ |
1 | $ c_3 \equiv (\color{blue}{4}^2 \cdot 9^1) \mod 7 $ = $ \color{magenta}4 $ |
0 | $ c_4 \equiv (\color{magenta}{4}^2 \cdot 9^0) \mod 7 $ = $ \color{green}2 $ |
The last value \( c_4 \) is the result of the congruence:
$$ 9^{10} \equiv 2 \mod 7 $$