Orthogonal Projection of a Vector onto a Subspace

The orthogonal projection of a vector onto a subspace is the sum of the orthogonal projections of the vector v onto each vector w in the basis. This is only possible if the basis is orthogonal. $$ P_W(v) = P_{w1}(v)+...+P_{wn}(v) $$

Each orthogonal projection P of vector v onto vector w is determined by the Fourier coefficients:

$$ P_{w}(v) =\frac{<v,w>}{<w,w>} \cdot w $$

    A Practical Example

    Consider a subspace W in R3 within the field K=R.

    The basis of the subspace is as follows:

    $$ W = L_R \{ w_1, w_2 \} $$

    where

    $$ w_1 = (1,1,-2) \\ w_2 = (1,1,1) $$

    This is an orthogonal basis because the dot product of its vectors equals zero.

    $$ <w_1,w_2> = 0 $$

    The vector v, whose orthogonal projection onto the subspace W we want to calculate, is as follows:

    $$ v = (2,1,3) $$

    The orthogonal projection of vector v onto subspace W is:

    $$ P_W(v) = P_{w_1}(v) + P_{w_2}(v) $$

    $$ P_W(v) = \frac{<v,w_1>}{<w_1,w_1>} \cdot w_1 + \frac{<v,w_2>}{<w_2,w_2>} \cdot w_2 $$

    $$ P_W(v) = \frac{<(2,1,3),(1,1,-2)>}{<(1,1,-2),(1,1,-2)>} \cdot (1,1,-2) + \frac{<(2,1,3),(1,1,1)>}{<(1,1,1),(1,1,1)>} \cdot (1,1,1) $$

    $$ P_W(v) = \frac{2 \cdot 1 + 1 \cdot 1 + 3 \cdot -2}{1 \cdot 1 + 1 \cdot 1 + (-2) \cdot (-2)} \cdot (1,1,-2) + \frac{2 \cdot 1 + 1 \cdot 1 + 3 \cdot 1}{1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1} \cdot (1,1,1) $$

    $$ P_W(v) = \frac{2 + 1 -6}{1 +1 + 4} \cdot (1,1,-2) + \frac{2+1+3}{1+1+1} \cdot (1,1,1) $$

    $$ P_W(v) = \frac{-3}{6} \cdot (1,1,-2) + \frac{6}{3} \cdot (1,1,1) $$

    $$ P_W(v) = \frac{-1}{2} \cdot (1,1,-2) + 2 \cdot (1,1,1) $$

    $$ P_W(v) = (1 \cdot (- \frac{1}{2}),1 \cdot (- \frac{1}{2}),-2 \cdot (- \frac{1}{2})) + (1 \cdot 2 ,1 \cdot 2 ,1 \cdot 2 ) $$

    $$ P_W(v) = (- \frac{1}{2}, - \frac{1}{2}, \frac{2}{2}) + (2 ,2 ,2 ) $$

    $$ P_W(v) = (- \frac{1}{2}, - \frac{1}{2}, 1) + (2 ,2 ,2 ) $$

    $$ P_W(v) = ( \frac{-1 + 2 \cdot 2}{2}, \frac{-1 + 2 \cdot 2}{2}, 1+2) $$

    $$ P_W(v) = ( \frac{-1 + 4}{2}, \frac{-1 + 4}{2}, 3) $$

    $$ P_W(v) = ( \frac{3}{2}, \frac{3}{2}, 3) $$

    This results in the orthogonal projection of the vector onto subspace W.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Orthogonality