Eliminating the mixed xy term in conics

To remove the mixed $xy$ term from a conic, you simply rotate the axes by an angle $\alpha$ such that $$\tan 2\alpha = \frac{B}{A - C}$$ where $A, B, C$ are the coefficients of the general conic equation. The rotation angles that satisfy this condition are $$ \alpha = \tfrac{1}{2} \arctan \left(\frac{B}{A - C}\right) + \tfrac{k\pi}{2} $$

There is always a rotation angle that will eliminate the mixed $xy$ term from the equation of a conic.

To determine this angle:

  1. Identify the coefficients $(A, B, C)$ in the general conic equation: $$ Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 $$
  2. Apply the formula for the rotation angle: $$ \tan 2\alpha = \frac{B}{A - C} $$

    Note. If the denominator $A - C$ is zero, the tangent is undefined (the angle is vertical). In this special case, the condition simplifies to $$ \cos 2\alpha = 0 \quad \Longrightarrow \quad 2\alpha = \tfrac{\pi}{2} + k\pi $$

  3. Compute the angle of rotation $ \alpha $ and choose one solution: $$ \alpha = \tfrac{1}{2} \arctan \left(\frac{B}{A - C}\right) + \tfrac{k\pi}{2} $$
  4. Rotate the axes by the chosen angle $ \alpha $: $$ \begin{cases} x = x'\cos\alpha - y'\sin\alpha \\ \\ y = x'\sin\alpha + y'\cos\alpha  \end{cases}$$
  5. Rewrite the conic equation. The mixed term $ x'y' $ will disappear.

Worked Example

Consider the following conic equation, which contains a mixed term:

$$ 4x^2 + 8xy + 4y^2 + \sqrt{2} x - \sqrt{2} y = 0 $$

Here the coefficients are: $$ A=4, \ B=8, \ C=4, \ D=\sqrt{2}, \ E=-\sqrt{2}, \ F=0$$

Now, calculate the angle that removes $xy$ using the formula:

$$ \tan 2\alpha = \frac{B}{A-C} $$

Since $A-C=0 $, $\tan 2\alpha$ is undefined.

In this situation, we use the alternative condition $ \cos 2\alpha=0$, which gives:

$$ 2\alpha = \arccos 0 $$

$$ 2 \alpha = \frac{\pi}{2}+k\pi $$

$$  \alpha=\frac{\pi}{4}+k\frac{\pi}{2} $$

For simplicity, let’s take $\alpha=\frac{\pi}{4}$ and perform the rotation:

$$ \begin{cases} x = x'\cos\alpha + y'\sin\alpha \\ \\ y = -x'\sin\alpha + y'\cos\alpha \end{cases} $$

$$ \begin{cases} x = x'\cos \frac{\pi}{4} + y'\sin \frac{\pi}{4} \\ \\ y = -x'\sin \frac{\pi}{4} + y'\cos \frac{\pi}{4} \end{cases} $$

Since $ \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} $ and $ \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} $:

$$ \begin{cases} x = x' \frac{\sqrt{2}}{2} + y' \frac{\sqrt{2}}{2} \\ \\ y = -x' \frac{\sqrt{2}}{2} + y' \frac{\sqrt{2}}{2} \end{cases} $$

$$ \begin{cases} x = \frac{\sqrt{2}}{2} (x' + y') \\ \\ y =  \frac{\sqrt{2}}{2} ( y' -x' ) \end{cases} $$

Substituting $ x $ and $ y $ into the original equation:

$$ 4x^2 + 8xy + 4y^2 + \sqrt{2} x - \sqrt{2} y = 0 $$

Now expand the quadratic terms $ 4x^2, 8xy , 4y^2 $ as well as the linear terms $ \sqrt{2} x, \sqrt{2} y $:

  • $ 4x^2 = 4 ( \frac{\sqrt{2}}{2} (x' + y') )^2 =  2x'^2+4x'y'+2y'^2 $
  • $ 8xy = 8 ( \frac{\sqrt{2}}{2} (x' + y') ) (  \frac{\sqrt{2}}{2} ( y' -x' ) ) = 4y'^2 -4x'^2 $
  • $ 4y^2 =  4 ( \frac{\sqrt{2}}{2} (y' -x') )^2 = 2x'^2-4x'y'+2y'^2 $
  • $ \sqrt{2} x = \sqrt{2}  \frac{\sqrt{2}}{2} (x' + y') = x'+y' $
  • $ - \sqrt{2} y = - \sqrt{2}  \frac{\sqrt{2}}{2} (y' -x' ) = x'-y' $

Putting everything together, the equation becomes:

$$ (2x'^2+4x'y'+2y'^2) + ( 4y'^2 -4x'^2 )  + ( 2x'^2 -4x'y'+2y'^2 ) + (x'+y' ) + (x'-y' ) = 0  $$

$$ 2x'^2+4x'y'+2y'^2 + 4y'^2 -4x'^2  + 2x'^2 -4x'y'+2y'^2 + x'+y' + x'-y'  = 0  $$

$$ x^2 (2-4+2) + y'^2 (2 +4 +2) + x'y' (4-4) + 2x'  = 0  $$

$$ 0 \cdot x^2 + 8 \cdot  y'^2 + 0 \cdot x'y' + 2x' = 0  $$

$$ 8 y'^2 + 2x' = 0  $$

In the rotated system with $\alpha=\frac{\pi}{4}$, the mixed term $ xy $ has vanished.

$$ 2x' = - 8 y'^2   $$

$$ x'=-4 y'^2 $$

After rotation, the parabola has its vertex at the origin, its axis parallel to the $x'$-axis, and it opens to the left:

conic example

Proof

We begin with the general equation of a conic:

$$ Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 $$

Our task is to determine the rotation angle $ \alpha $ that eliminates the coefficient $ B $, which multiplies the mixed term $ xy $.

In analytic geometry, a rotation of the axes is described by:

$$ \begin{cases} x = x'\cos\alpha - y'\sin\alpha \\ y = x'\sin\alpha + y'\cos\alpha \end{cases} $$

Substituting $ x $ and $ y $ into the conic equation, we expand term by term:

  • The term $ Ax^2 $: $$ \begin{aligned} Ax^2 &= A\,(x' \cos \alpha - y' \sin \alpha)^2 \\ &= A\,(x'^2 \cos^2 \alpha - 2x'y' \sin \alpha \cos \alpha + y'^2 \sin^2 \alpha) \end{aligned} $$
  • The term $ Bxy $: $$ \begin{aligned} Bxy &= B\,(x' \cos \alpha - y' \sin \alpha)(x' \sin \alpha + y' \cos \alpha) \\ &= B\,(x'^2 \cos \alpha \sin \alpha + x'y'(\cos^2 \alpha - \sin^2 \alpha) - y'^2 \sin \alpha \cos \alpha) \end{aligned} $$
  • The term $ Cy^2 $: $$ \begin{aligned} Cy^2 &= C\,(x' \sin \alpha + y' \cos \alpha)^2 \\ &= C\,(x'^2 \sin^2 \alpha + 2x'y' \sin \alpha \cos \alpha + y'^2 \cos^2 \alpha) \end{aligned} $$
  • The term $ Dx $: $$ \begin{aligned} Dx &= D\,(x'\cos\alpha - y'\sin\alpha) \\ &= (D\cos\alpha)\,x' + (-D\sin\alpha)\,y' \end{aligned} $$
  • The term $ Ey $: $$ \begin{aligned} Ey &= E\,(x'\sin\alpha + y'\cos\alpha) \\ &= (E\sin\alpha)\,x' + (E\cos\alpha)\,y' \end{aligned} $$

Now collect the coefficients of the mixed term $ x'y' $:

$$ B' = -2A x'y' \sin \alpha \cos \alpha + B x'y' ( \cos^2 \alpha - \sin^2 \alpha) + 2C x'y' \sin \alpha \cos \alpha $$

$$ B' = x'y' \cdot \big( -2A \sin \alpha \cos \alpha + B ( \cos^2 \alpha - \sin^2 \alpha) + 2C \sin \alpha \cos \alpha \big) $$

By the zero-product property, $ B' = 0 $ if and only if one of the two factors is zero.

The first factor, $ x'y'=0 $, is trivial. The relevant condition comes from the second factor:

$$ - 2A \sin \alpha \cos \alpha + B ( \cos^2 \alpha - \sin^2 \alpha) + 2C \sin \alpha \cos \alpha = 0 $$

Rearranging terms gives:

$$ (2C - 2A) \sin \alpha \cos \alpha + B ( \cos^2 \alpha - \sin^2 \alpha) = 0 $$

$$ (C - A) \cdot 2 \sin \alpha \cos \alpha + B ( \cos^2 \alpha - \sin^2 \alpha) = 0 $$

Using the double-angle identities, $ 2 \sin \alpha \cos \alpha = \sin 2 \alpha $ and $ \cos^2 \alpha - \sin^2 \alpha = \cos 2 \alpha $, we obtain:

$$ (C - A) \sin 2 \alpha + B \cos 2 \alpha = 0 $$

$$ (C - A) \sin 2 \alpha = - B \cos 2 \alpha $$

Dividing through by $ \cos 2 \alpha $ yields:

$$ (C - A) \frac{ \sin 2 \alpha }{ \cos 2 \alpha } = - B $$

Since $ \tfrac{\sin \theta}{\cos \theta} = \tan \theta $, it follows that:

$$ (C - A) \tan 2 \alpha = - B $$

$$ \tan 2 \alpha = \frac{- B }{C-A } $$

Multiplying numerator and denominator by $ -1 $ gives:

$$ \tan 2 \alpha = \frac{ B }{A-C } $$

Thus, whenever $ \tan 2 \alpha = \tfrac{ B }{A-C } $, the coefficient $ B' $ of the mixed term is zero. This establishes the condition required to eliminate the mixed term.

From this relation we have:

$$ 2\alpha = \arctan \left(\frac{B}{A - C}\right) + k\pi, \qquad k \in \mathbb{Z} $$

Which leads to:

$$ \alpha = \tfrac{1}{2} \arctan \left(\frac{B}{A - C}\right) + \tfrac{k\pi}{2} $$

In other words, there is not a single solution for $\alpha$, but rather an entire family of angles differing by $\tfrac{\pi}{2}$.

For practical purposes, it is customary to choose the solution lying between $-\tfrac{\pi}{4}$ and $\tfrac{\pi}{4}$.

And this completes the proof.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Conic Sections