Double Angle Formulas in Trigonometry

    In trigonometry, the double angle formulas are as follows:

  • Double angle formula for sine$$ \sin 2a = 2 \sin a \cos a $$
  • Double angle formula for cosine $$ \cos 2a = \cos^2 a - \sin^2 a = \begin{cases} 1 - 2 \sin^2 a \\ \\ 2 \cos^2(a)-1 \end{cases} $$
  • Double angle formula for tangent$$ \tan 2a = \frac{2 \tan a}{1- \tan^2 a} $$

From the cosine double angle formula, we can derive two other useful formulas:

$$ \sin^2 a = \frac{1-\cos 2a}{2} $$

$$ \cos^2 a = \frac{1+\cos 2a}{2} $$

Let's now explore examples and proofs of these double angle formulas.

Double Angle Formula for Sine

The double angle formula for sine is $$ \sin 2a = 2 \sin a \cos a $$

This means that the sine of twice an angle is not simply twice the sine of the angle:

$$ \sin 2a \ne 2 \sin a $$

Example

The sine of 30° (or π/6 radians) is:

$$ \sin \frac{\pi}{6} = \frac{1}{2} $$

The sine of twice that angle is the sine of 60°:

$$ \sin (2 \cdot \frac{\pi}{6}) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} $$

We can verify this by using the double angle formula for sine at 30°:

$$ \sin (2 \cdot \frac{\pi}{6}) = 2 \sin \frac{\pi}{6} \cos \frac{\pi}{6} = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} $$

Note: Doubling the sine of 30° yields a completely different result: $$ 2 \sin \frac{\pi}{6} = 2 \cdot \frac{1}{2} = 1 $$

Proof

The sine of twice an angle:

$$ \sin 2a $$

can be rewritten as:

$$ \sin 2a = \sin (a + a) $$

By applying the sine addition formula, we get:

$$ \sin 2a = \sin (a + a) = \sin a \cos a + \sin a \cos a $$

This simplifies to the formula we intended to prove:

$$ \sin 2a = 2 \sin a \cos a $$

Double Angle Formula for Cosine

The double angle formula for cosine is $$ \cos 2a = \cos^2 a - \sin^2 a = \begin{cases} 1 - 2 \sin^2 a \\ \\ 2 \cos^2(a)-1 \end{cases} $$

Thus, the cosine of twice an angle is not the same as twice the cosine of the angle:

$$ \cos 2a \ne 2 \cos a $$

Example

The cosine of 30° (or π/6 radians) is:

$$ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} $$

The cosine of twice that angle is the cosine of 60°:

$$ \cos (2 \cdot \frac{\pi}{6}) = \cos \frac{\pi}{3} = \frac{1}{2} $$

This can also be confirmed using the double angle formula for cosine at 30°:

$$ \cos (2 \cdot \frac{\pi}{6}) = \cos^2 \frac{\pi}{6} - \sin^2 \frac{\pi}{6} = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} $$

Note: Doubling the cosine of 30° gives a completely different result: $$ 2 \cos \frac{\pi}{6} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} $$

Proof

The cosine of twice an angle:

$$ \cos 2a $$

can be rewritten as:

$$ \cos 2a = \cos (a + a) $$

By using the cosine addition formula, we find:

$$ \cos 2a = \cos (a + a) = \cos a \cos a - \sin a \sin a $$

This leads to the desired result:

$$ \cos 2a = \cos^2 a - \sin^2 a $$

From here, we can derive other related formulas. For instance, we can express cos2(a) as (1 - sin2(a)):

$$ \cos 2a = \cos^2 a - \sin^2 a $$

$$ \cos 2a = (1 - \sin^2 a) - \sin^2 a $$

$$ \cos 2a = 1 - 2\sin^2 a $$

Factoring out sin2(a), we get:

$$ \sin^2 a = \frac{1 - \cos 2a}{2} $$

Similarly, we can express sin2(a) as (1 - cos2(a)):

$$ \cos 2a = \cos^2 a - \sin^2 a $$

$$ \cos 2a = \cos^2 a - (1 - \cos^2 a) $$

$$ \cos 2a = -1 + 2 \cos^2 a $$

Factoring out cos2(a), we obtain:

$$ \cos^2 a = \frac{1 + \cos 2a}{2} $$

Double Angle Formula for Tangent

The double angle formula for tangent is $$ \tan 2a = \frac{2 \tan a}{1- \tan^2 a} $$

This shows that the tangent of twice an angle is not the same as twice the tangent of the angle:

$$ \tan 2a \ne 2 \tan a $$

Example

The tangent of 30° (or π/6 radians) is:

$$ \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3} $$

The tangent of twice that angle is the tangent of 60°:

$$ \tan (2 \cdot \frac{\pi}{6}) = \tan \frac{\pi}{3} = \sqrt{3} $$

This can be confirmed using the double angle formula for tangent at 30°:

$$ \tan (2 \cdot \frac{\pi}{6}) = \frac{2 \cdot \tan \frac{\pi}{6}}{1 - \tan^2 \frac{\pi}{6}} = \frac{2 \cdot \frac{\sqrt{3}}{3}}{1 - \left(\frac{\sqrt{3}}{3}\right)^2} = $$ $$ = \frac{\frac{2 \sqrt{3}}{3}}{1 - \frac{3}{9}} = \frac{\frac{2 \sqrt{3}}{3}}{\frac{9-3}{9}} = \frac{\frac{2 \sqrt{3}}{3}}{\frac{2}{3}} = \frac{2 \sqrt{3}}{3} \cdot \frac{3}{2} = \sqrt{3} $$

Note: Doubling the tangent of 30° gives a different result: $$ 2 \tan \frac{\pi}{6} = 2 \cdot \frac{\sqrt{3}}{3} $$

Proof

The tangent of twice an angle:

$$ \tan 2a $$

can be rewritten as:

$$ \tan 2a = \tan (a + a) $$

By applying the tangent addition formula, we get:

$$ \tan 2a = \tan (a + a) = \frac{\tan a + \tan a}{1 - \tan a \tan a} $$

$$ \tan 2a = \frac{2\tan a}{1 - \tan^2 a} $$

And so on. 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous