Werner Formulas

What Are the Werner Formulas?

In trigonometry, the Werner formulas transform a product of trigonometric functions into a sum of trigonometric functions. $$ \sin \alpha \cos \beta = \frac{1}{2} \cdot [ \sin (\alpha+\beta) + \sin(\alpha-\beta) ] $$ $$ \cos \alpha \cos \beta = \frac{1}{2} \cdot [ \cos (\alpha+\beta) + \cos(\alpha-\beta) ] $$ $$ \sin \alpha \sin \beta = \frac{1}{2} \cdot [ \cos (\alpha-\beta) - \cos(\alpha+\beta) ] $$

What Are They Used For?

The Werner formulas are essentially the reverse of the prosthaphaeresis formulas.

While the prosthaphaeresis formulas turn a sum into a product of trigonometric functions, the Werner formulas convert a product into a sum of trigonometric functions.

Note: Interestingly, the mathematician Johann Werner, who developed the Werner formulas, is also credited with the prosthaphaeresis formulas. This shows a strong connection between these two sets of formulas, especially in their derivations.

A Practical Example

Let’s walk through a simple example, using the sine of 30° (π/6) and the cosine of 60° (π/3):

$$ \sin 30° = \frac{1}{2} $$

$$ \cos 60° = \frac{1}{2} $$

The product of these two trigonometric functions is:

$$ \sin 30° \cdot \cos 60° = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} $$

Now, let's check if the Werner formula yields the same result.

$$ \sin \alpha \cos \beta = \frac{1}{2} \cdot [ \sin (\alpha+\beta) + \sin(\alpha-\beta) ] $$

Here, α=30° and β=60°.

$$ \sin 30° \cos 60° = \frac{1}{2} \cdot [ \sin (30°+60°) + \sin(30°-60°) ] $$

$$ \sin 30° \cos 60° = \frac{1}{2} \cdot [ \sin (90°) + \sin(-30°) ] $$

We know the sine of 90° is 1:

$$ \sin 30° \cos 60° = \frac{1}{2} \cdot [ 1 + \sin(-30°) ] $$

The sine of -30° is -1/2:

$$ \sin 30° \cos 60° = \frac{1}{2} \cdot [ 1 - \frac{1}{2} ] $$

Now, simplify the expression:

$$ \sin 30° \cos 60° = \frac{1}{2} \cdot \frac{1}{2} $$

$$ \sin 30° \cos 60° = \frac{1}{4} $$

As expected, the result matches.

The Proof

The First Werner Formula

$$ \sin \alpha \cos \beta = \frac{1}{2} \cdot [ \sin (\alpha+\beta) + \sin(\alpha-\beta) ] $$

To prove the first Werner formula, we’ll use the sine addition and subtraction formulas:

$$ \begin{cases} \sin (\alpha+\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \\ \sin (\alpha-\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{cases} $$

We’ll now add both equations:

$$ \sin (\alpha+\beta) + \sin (\alpha-\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta + \sin \alpha \cos \beta - \cos \alpha \sin \beta $$

Simplifying, we get:

$$ \sin (\alpha+\beta) + \sin (\alpha-\beta) = 2 \cdot \sin \alpha \cos \beta $$

Now, divide both sides by 2:

$$ \frac{1}{2} \cdot [ \sin (\alpha+\beta) + \sin (\alpha-\beta) ] = \sin \alpha \cos \beta $$

And that’s the proof.

The Second Werner Formula

$$ \cos \alpha \cos \beta = \frac{1}{2} \cdot [ \cos (\alpha+\beta) + \cos (\alpha-\beta) ] $$

To prove the second Werner formula, we’ll use the cosine addition and subtraction formulas:

$$ \begin{cases} \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{cases} $$

Adding both equations gives us:

$$ \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cdot \cos \alpha \cos \beta $$

Again, divide both sides by 2:

$$ \frac{1}{2} \cdot [ \cos (\alpha+\beta) + \cos (\alpha-\beta) ] = \cos \alpha \cos \beta $$

And that completes the proof.

The Third Werner Formula

$$ \sin \alpha \sin \beta = \frac{1}{2} \cdot [ \cos (\alpha-\beta) - \cos(\alpha+\beta) ] $$

For the third Werner formula, we use the cosine addition and subtraction formulas again:

$$ \begin{cases} \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{cases} $$

Subtracting the two equations gives us:

$$ \cos (\alpha+\beta) - \cos (\alpha-\beta) = -2 \cdot \sin \alpha \sin \beta $$

Now, divide both sides by 2:

$$ \frac{1}{2} \cdot [ \cos (\alpha+\beta) - \cos (\alpha-\beta) ] = - \sin \alpha \sin \beta $$

Multiplying both sides by -1, we get:

$$ \frac{1}{2} \cdot [ \cos (\alpha-\beta) - \cos (\alpha+\beta) ] = \sin \alpha \sin \beta $$

And that’s the proof.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous