Prosthaphaeresis formulas

Prosthaphaeresis formulas allow us to transform the sum or difference of two trigonometric functions into a product of trigonometric functions.

Sine prosthaphaeresis formulas $$ \sin a + \sin b = 2 \cdot \sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2} $$ $$ \sin a - \sin b = 2 \cdot \sin \frac{a-b}{2} \cdot \cos \frac{a+b}{2} $$ Cosine prosthaphaeresis formulas $$ \cos a + \cos b = 2 \cdot \cos \frac{a+b}{2} \cdot \cos \frac{a-b}{2}$$ $$ \cos a - \cos b = -2 \cdot \sin \frac{a+b}{2} \cdot \sin \frac{a-b}{2}$$

A practical example

Let’s use the sum of the sine of 60° (π/3) and the sine of 30° (π/6) as an example.

$$ \sin 60° + \sin 30° $$

Since the sine of 60° is √3/2 and the sine of 30° is 1/2, the correct result is

$$ \sin 60° + \sin 30° = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{1 + \sqrt{3}}{2} $$

Now, let’s verify if we can get the same result using the prosthaphaeresis formulas.

We’ll apply the sine addition prosthaphaeresis formula by assigning a=60° and b=30°

$$ \sin a + \sin b = 2 \cdot \sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2} $$

$$ \sin 60° + \sin 30° = 2 \cdot \sin \frac{60°+30°}{2} \cdot \cos \frac{60-30°}{2} $$

$$ \sin 60° + \sin 30° = 2 \cdot \sin \frac{90°}{2} \cdot \cos \frac{30°}{2} $$

$$ \sin 60° + \sin 30° = 2 \cdot \sin 45° \cdot \cos 15° $$

The sine of 45° is √2/2.

$$ \sin 60° + \sin 30° = 2 \cdot \frac{\sqrt{2}}{2} \cdot \cos 15° $$

The cosine of 15° is (√6 + √2) / 4.

$$ \sin 60° + \sin 30° = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{6}+\sqrt{2}}{4} $$

$$ \sin 60° + \sin 30° = \sqrt{2} \cdot \frac{\sqrt{6}+\sqrt{2}}{4} $$

$$ \sin 60° + \sin 30° = \frac{\sqrt{2} \cdot \sqrt{6}+ \sqrt{2} \cdot\sqrt{2}}{4} $$

$$ \sin 60° + \sin 30° = \frac{ \sqrt{2 \cdot 6}+ 2}{4} $$

$$ \sin 60° + \sin 30° = \frac{ \sqrt{12}+ 2}{4} $$

Now, divide both the numerator and the denominator by two using the properties of fractions, and simplify.

$$ \sin 60° + \sin 30° = \frac{ \frac{1}{2} \cdot ( \sqrt{12}+ 2)}{\frac{1}{2} \cdot 4} $$

$$ \sin 60° + \sin 30° = \frac{ \frac{1}{2} \cdot \sqrt{12}+ \frac{1}{2} \cdot 2}{2} $$

$$ \sin 60° + \sin 30° = \frac{ \sqrt{\frac{1}{4} \cdot 12}+ 1}{2} $$

$$ \sin 60° + \sin 30° = \frac{ \sqrt{3}+ 1}{2} $$

The final result matches the initial calculation.

The proof

The sine addition prosthaphaeresis formula

To prove the sine addition prosthaphaeresis formula, I use the sine addition and subtraction formulas

$$ \begin{cases} \sin (\alpha+\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \\ \sin (\alpha-\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{cases} $$

We add the two formulas together:

$$ \sin (\alpha+\beta) + \sin (\alpha-\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta + \sin \alpha \cos \beta - \cos \alpha \sin \beta $$

Then we simplify:

$$ \sin (\alpha+\beta) + \sin (\alpha-\beta) = 2 \cdot \sin \alpha \cos \beta $$

Let’s assign a=α+β to represent the sum of the angles

$$ \sin a + \sin (\alpha-\beta) = 2 \cdot \sin \alpha \cos \beta $$

and b=α-β to represent the difference

$$ \sin a + \sin b = 2 \cdot \sin \alpha \cos \beta $$

We can rewrite the angle α as (a+b)/2

$$ \sin a + \sin b = 2 \cdot \sin \frac{a+b}{2} \cos \beta $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ a = \alpha + \beta $$ $$ a = \alpha + (\alpha - b) $$ $$ a = \alpha + \alpha - b $$ $$ a+b = 2\alpha $$ $$ \frac{a+b}{2} = \alpha $$

The angle β can be rewritten as (a-b)/2

$$ \sin a + \sin b = 2 \cdot \sin \frac{a+b}{2} \cos \frac{a-b}{2} $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ \beta = a - \alpha $$ $$ \beta = a - (\beta + b) $$ $$ \beta = a - \beta - b $$ $$ \beta + \beta = a - b $$ $$ 2 \beta = a - b $$ $$ \beta = \frac{ a - b }{2} $$

This completes the proof for the sine addition prosthaphaeresis formula.

The sine difference prosthaphaeresis formula

To prove the sine difference prosthaphaeresis formula, we use the sine addition and subtraction formulas

$$ \begin{cases} \sin (\ alpha+\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \\ \sin (\alpha-\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{cases} $$

We subtract the two formulas:

$$ \sin (\alpha+\beta) - \sin (\alpha-\beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta - ( \sin \alpha \cos \beta - \cos \alpha \sin \beta ) $$

And simplify:

$$ \sin (\alpha+\beta) - \sin (\alpha-\beta) = 2 \cos \alpha \sin \beta $$

Let’s assign a=α+β for the sum of the angles

$$ \sin a - \sin (\alpha-\beta) = 2 \cos \alpha \sin \beta $$

and b=α-β for the difference

$$ \sin a - \sin b = 2 \cos \alpha \sin \beta $$

The angle α can be rewritten as (a+b)/2

$$ \sin a - \sin b = 2 \cdot \cos \frac{a+b}{2} \sin \beta $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ a = \alpha + \beta $$ $$ a = \alpha + (\alpha - b) $$ $$ a = \alpha + \alpha - b $$ $$ a+b = 2\alpha $$ $$ \frac{a+b}{2} = \alpha $$

The angle β can be rewritten as (a-b)/2

$$ \sin a - \sin b = 2 \cdot \cos \frac{a+b}{2} \sin \frac{a-b}{2} $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ \beta = a - \alpha $$ $$ \beta = a - (\beta + b) $$ $$ \beta = a - \beta - b $$ $$ \beta + \beta = a - b $$ $$ 2 \beta = a - b $$ $$ \beta = \frac{ a - b }{2} $$

This completes the proof for the sine difference prosthaphaeresis formula.

The cosine addition prosthaphaeresis formula

To prove the cosine addition prosthaphaeresis formula, we use the cosine addition and subtraction formulas

$$ \begin{cases} \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{cases} $$

We add the two formulas:

$$ \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cdot \cos \alpha \cos \beta $$

Let’s assign a=α+β to represent the sum of the angles

$$ \cos a + \cos (\alpha-\beta) = 2 \cdot \cos \alpha \cos \beta $$

and b=α-β for the difference

$$ \cos a + \cos b = 2 \cdot \cos \alpha \cos \beta $$

The angle α can be rewritten as (a+b)/2

$$ \cos a + \cos b = 2 \cdot \cos \frac{a+b}{2} \cos \beta $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ a = \alpha + \beta $$ $$ a = \alpha + (\alpha - b) $$ $$ a = \alpha + \alpha - b $$ $$ a+b = 2\alpha $$ $$ \frac{a+b}{2} = \alpha $$

The angle β can be rewritten as (a-b)/2

$$ \cos a + \cos b = 2 \cdot \cos \frac{a+b}{2} \cos \frac{a-b}{2} $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ \beta = a - \alpha $$ $$ \beta = a - (\beta + b) $$ $$ \beta = a - \beta - b $$ $$ \beta + \beta = a - b $$ $$ 2 \beta = a - b $$ $$ \beta = \frac{ a - b }{2} $$

This completes the proof for the cosine addition prosthaphaeresis formula.

The cosine difference prosthaphaeresis formula

To prove the cosine difference prosthaphaeresis formula, we use the cosine addition and subtraction formulas

$$ \begin{cases} \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{cases}$$

We subtract the two formulas:

$$ \cos (\alpha+\beta) - \cos (\alpha-\beta) = - 2 \cdot \sin \alpha \sin \beta $$

Let’s assign a=α+β to represent the sum of the angles

$$ \cos a - \cos (\alpha-\beta) = - 2 \cdot \sin \alpha \sin \beta $$

and b=α-β for the difference

$$ \cos a - \cos b = - 2 \cdot \sin \alpha \sin \beta $$

We can rewrite the angle α as (a+b)/2

$$ \cos a - \cos b = - 2 \cdot \sin \frac{a+b}{2} \sin \beta $$

Explanation. If $$ a = \alpha + \beta $$ $$ b = \alpha - \beta $$ then $$ \beta = a - \alpha $$ $$ \beta = a - (\beta + b) $$ $$ \beta = a - \beta - b $$ $$ \beta + \beta = a - b $$ $$ 2 \beta = a - b $$ $$ \beta = \frac{ a - b }{2} $$

This completes the proof for the cosine difference prosthaphaeresis formula.

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous