Half-angle formulas

The half-angle formulas allow us to determine the values of trigonometric functions for half an angle, α/2, in terms of the full angle, α. sinα2=±1cosα2sinα2=±1cosα2 cosα2=±1+cosα2 tanα2=±1cosα1+cosα={sinα1+cosα1cosαsinα cotα2=±1+cosα1cosα

How do you choose the sign?

In the half-angle formulas, the plus-minus sign (±) appears, but both signs do not apply simultaneously.

The correct sign is determined by the sign of the trigonometric function for the angle α/2.

Example: If the sine of α/2 is negative because the terminal side is in the 3rd or 4th quadrant, the sine in the half-angle formula will also be negative. Conversely, if it’s in the 1st or 2nd quadrant, the sine in the formula will be positive. The same logic applies to cosine, tangent, and cotangent. You must always consider the sign of the relevant trigonometric function at the terminal side of angle α/2.

A practical example

Let’s consider the angle α = 120°:

α=120°=2π3 rad

The cosine of α = 120° is:

cos120°=12

Using this angle, we can find the sine, cosine, and tangent values for half the angle, α/2 = 60°, by applying the half-angle formulas.

First, apply the cosine half-angle formula:

cosα2=±1+cosα2

Since &cos(120°) = -1/2,

cosα2=±1+(12)2

cosα2=±2122

cosα2=±122

cosα2=±1212

cosα2=±14

cosα2=±12

We choose the positive sign because the cosine of α/2 = 60° lies in the 1st quadrant, making it positive.

cosα2=12

This result is correct: the cosine of 60° is indeed +1/2.

Now, apply the sine half-angle formula for α/2 = 60°:

sinα2=±1cosα2

Since &cos(120°) = -1/2,

sinα2=±1(12)2

sinα2=±2+122

sinα2=±322

sinα2=±3212

sinα2=±34

sinα2=±32

We choose the positive sign because the sine of α/2 = 60° is positive in the 1st quadrant.

sinα2=+32

This result is also correct: the sine of 60° is indeed √3/2.

Finally, apply the tangent half-angle formula for α/2 = 60°:

tanα2=±1cosα1+cosα

Since &cos(120°) = -1/2,

tanα2=±1(12)1+(12)

tanα2=±2+12212

tanα2=±3212

tanα2=±3221

tanα2=±3

We choose the positive sign because the tangent of α/2 = 60° is positive in the 1st quadrant.

tanα2=+3

This result is correct: the tangent of 60° is indeed √3.

Thus, we have obtained the sine, cosine, and tangent values for α/2 = 60° starting from the cosine of its double angle, α = 120°.

The proof

Half-angle formula for cosine

We can express the cosine of angle α as:

cosα=cos(2α2)

Using the cosine double-angle formula:

cosα=2cos2(α2)1

Solving for &cos(α/2), we get:

cos2(α2)=1+cosα2

Taking the square root on both sides:

cos2(α2)=1+cosα2

This gives us the cosine half-angle formula:

cos(α2)=±1+cosα2

Half-angle formula for sine

Similarly, we can express the cosine of angle α as:

cosα=cos(2α2)

Using the cosine double-angle formula in terms of sine:

cosα=12sin2(α2)

Solving for &sin(α/2), we get:

sin2(α2)=cosα12

Multiplying both sides by -1:

sin2(α2)=1cosα2

Taking the square root on both sides:

sin2(α2)=1cosα2

This gives us the sine half-angle formula:

sin(α2)=±1cosα2

Half-angle formula for tangent

The tangent of any angle α is the ratio of its sine to cosine:

tanα=sinαcosα

For the angle α/2, we have:

tanα2=sin(α2)cos(α2)

Substituting the half-angle formulas for sine and cosine:

tanα2=1cosα21+cosα2

Simplifying, we get:

tanα2=1cosα221+cosα

And this gives us the tangent half-angle formula:

tanα2=±1cosα1+cosα

Half-angle formula for cotangent

The cotangent is the reciprocal of the tangent:

cotα2=1tanα2

Substituting the tangent half-angle formula:

cotα2=11cosα1+cosα

Simplifying, we get the cotangent half-angle formula:

cotα2=±1+cosα1cosα

Other half-angle formulas for tangent

Other forms of the tangent half-angle formulas include:

tanα2={sinα1+cosα1cosαsinα

These two formulas are yet to be proven.

The first formula

The tangent of α/2 can be written as:

tanα2=sin(α2)cos(α2)

Multiplying both the numerator and denominator by 2&cos(α/2):

tanα2=sin(α2)cos(α2)2cos(α2)2cos(α2)

tanα2=2sin(α2)cos(α2)2cos2(α2)

Now apply the sine double-angle formula:

tanα2=sinα2cos2(α2)

Note: According to the sine double-angle formula, sin2a=2sinacosa Here, the angle is a = α/2, so sinα=2sin(α2)cos(α2)

Rewriting the denominator:

tanα2=sinα2[cos(α2)cos(α2)]

Now, using the cosine half-angle formula:

tanα2=sinα2(1+cosα2)2

tanα2=sinα2(1+cosα)24

tanα2=sinα(1+cosα)2

And this gives the first tangent half-angle formula:

tanα2=sinα1+cosα

The second formula

The tangent of α/2 can also be expressed as:

tanα2=sin(α2)cos(α2)

Multiplying both numerator and denominator by 2&sin(α/2):

tanα2=sin(α2)cos(α2)2sin(α2)2sin(α2)

tanα2=2sin2(α2)2cos(α2)sin(α2)

Apply the sine double-angle formula to the denominator:

tanα2=2sin2(α2)sinα

Note: According to the sine double-angle formula, sin2a=2sinacosa In this case, a = α/2, so sinα=2sin(α2)cos(α2)

Now rewrite the denominator:

tanα2=2(sin(α2))2sinα

Substituting the sine half-angle formula:

tanα2=2(1cosα2)2sinα

tanα2=2(1cosα)24sinα

tanα2=1cosαsinα

And this gives the second tangent half-angle formula.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous