Half-angle formulas
The half-angle formulas allow us to determine the values of trigonometric functions for half an angle, α/2, in terms of the full angle, α. sinα2=±√1−cosα2sinα2=±√1−cosα2 cosα2=±√1+cosα2 tanα2=±√1−cosα√1+cosα={sinα1+cosα1−cosαsinα cotα2=±√1+cosα√1−cosα
How do you choose the sign?
In the half-angle formulas, the plus-minus sign (±) appears, but both signs do not apply simultaneously.
The correct sign is determined by the sign of the trigonometric function for the angle α/2.
Example: If the sine of α/2 is negative because the terminal side is in the 3rd or 4th quadrant, the sine in the half-angle formula will also be negative. Conversely, if it’s in the 1st or 2nd quadrant, the sine in the formula will be positive. The same logic applies to cosine, tangent, and cotangent. You must always consider the sign of the relevant trigonometric function at the terminal side of angle α/2.
A practical example
Let’s consider the angle α = 120°:
α=120°=2π3 rad
The cosine of α = 120° is:
cos120°=−12
Using this angle, we can find the sine, cosine, and tangent values for half the angle, α/2 = 60°, by applying the half-angle formulas.
First, apply the cosine half-angle formula:
cosα2=±√1+cosα2
Since &cos(120°) = -1/2,
cosα2=±√1+(−12)2
cosα2=±√2−122
cosα2=±√122
cosα2=±√12⋅12
cosα2=±√14
cosα2=±12
We choose the positive sign because the cosine of α/2 = 60° lies in the 1st quadrant, making it positive.
cosα2=12
This result is correct: the cosine of 60° is indeed +1/2.
Now, apply the sine half-angle formula for α/2 = 60°:
sinα2=±√1−cosα2
Since &cos(120°) = -1/2,
sinα2=±√1−(−12)2
sinα2=±√2+122
sinα2=±√322
sinα2=±√32⋅12
sinα2=±√34
sinα2=±√32
We choose the positive sign because the sine of α/2 = 60° is positive in the 1st quadrant.
sinα2=+√32
This result is also correct: the sine of 60° is indeed √3/2.
Finally, apply the tangent half-angle formula for α/2 = 60°:
tanα2=±√1−cosα√1+cosα
Since &cos(120°) = -1/2,
tanα2=±√1−(−12)√1+(−12)
tanα2=±√2+12√2−12
tanα2=±√32√12
tanα2=±√32⋅√21
tanα2=±√3
We choose the positive sign because the tangent of α/2 = 60° is positive in the 1st quadrant.
tanα2=+√3
This result is correct: the tangent of 60° is indeed √3.
Thus, we have obtained the sine, cosine, and tangent values for α/2 = 60° starting from the cosine of its double angle, α = 120°.
The proof
Half-angle formula for cosine
We can express the cosine of angle α as:
cosα=cos(2⋅α2)
Using the cosine double-angle formula:
cosα=2cos2(α2)−1
Solving for &cos(α/2), we get:
cos2(α2)=1+cosα2
Taking the square root on both sides:
√cos2(α2)=√1+cosα2
This gives us the cosine half-angle formula:
cos(α2)=±√1+cosα2
Half-angle formula for sine
Similarly, we can express the cosine of angle α as:
cosα=cos(2⋅α2)
Using the cosine double-angle formula in terms of sine:
cosα=1−2⋅sin2(α2)
Solving for &sin(α/2), we get:
−sin2(α2)=cosα−12
Multiplying both sides by -1:
sin2(α2)=1−cosα2
Taking the square root on both sides:
√sin2(α2)=√1−cosα2
This gives us the sine half-angle formula:
sin(α2)=±√1−cosα2
Half-angle formula for tangent
The tangent of any angle α is the ratio of its sine to cosine:
tanα=sinαcosα
For the angle α/2, we have:
tanα2=sin(α2)cos(α2)
Substituting the half-angle formulas for sine and cosine:
tanα2=√1−cosα2√1+cosα2
Simplifying, we get:
tanα2=√1−cosα2⋅21+cosα
And this gives us the tangent half-angle formula:
tanα2=±√1−cosα1+cosα
Half-angle formula for cotangent
The cotangent is the reciprocal of the tangent:
cotα2=1tanα2
Substituting the tangent half-angle formula:
cotα2=1√1−cosα1+cosα
Simplifying, we get the cotangent half-angle formula:
cotα2=±√1+cosα1−cosα
Other half-angle formulas for tangent
Other forms of the tangent half-angle formulas include:
tanα2={sinα1+cosα1−cosαsinα
These two formulas are yet to be proven.
The first formula
The tangent of α/2 can be written as:
tanα2=sin(α2)cos(α2)
Multiplying both the numerator and denominator by 2&cos(α/2):
tanα2=sin(α2)cos(α2)⋅2cos(α2)2cos(α2)
tanα2=2sin(α2)cos(α2)2cos2(α2)
Now apply the sine double-angle formula:
tanα2=sinα2cos2(α2)
Note: According to the sine double-angle formula, sin2a=2sinacosa Here, the angle is a = α/2, so sinα=2sin(α2)cos(α2)
Rewriting the denominator:
tanα2=sinα2⋅[cos(α2)⋅cos(α2)]
Now, using the cosine half-angle formula:
tanα2=sinα2⋅(√1+cosα2)2
tanα2=sinα2⋅(1+cosα)24
tanα2=sinα(1+cosα)2
And this gives the first tangent half-angle formula:
tanα2=sinα1+cosα
The second formula
The tangent of α/2 can also be expressed as:
tanα2=sin(α2)cos(α2)
Multiplying both numerator and denominator by 2&sin(α/2):
tanα2=sin(α2)cos(α2)⋅2sin(α2)2sin(α2)
tanα2=2sin2(α2)2cos(α2)⋅sin(α2)
Apply the sine double-angle formula to the denominator:
tanα2=2sin2(α2)sinα
Note: According to the sine double-angle formula, sin2a=2sinacosa In this case, a = α/2, so sinα=2sin(α2)cos(α2)
Now rewrite the denominator:
tanα2=2(sin(α2))2sinα
Substituting the sine half-angle formula:
tanα2=2⋅(√1−cosα2)2sinα
tanα2=2⋅(1−cosα)24sinα
tanα2=1−cosαsinα
And this gives the second tangent half-angle formula.