Trigonometric Functions
Trigonometric functions link the measure of an angle to the lengths of segments projected onto the axes.
For any angle α, there is exactly one point P on the circumference, defined by its intersection with the radius.
The projection of point P onto the y-axis creates a segment OPy, known as the sine.
Similarly, projecting point P onto the x-axis forms a segment OPx, called the cosine.
Other common trigonometric functions include the tangent and cotangent.
Key Angles
Below are some important angles for sine and cosine functions:
Angle (Degrees) | Angle (Radians) | Sine | Cosine | Tangent | Cotangent |
---|---|---|---|---|---|
$$ 0° $$ | $$ 0 $$ | $$ 0 $$ | $$ 1 $$ | $$ 0 $$ | $$ \nexists $$ |
$$ 30° $$ | $$ \frac{\pi}{6} $$ | $$ \frac{1}{2} $$ | $$ \frac{\sqrt{3}}{2} $$ | $$ \frac{\sqrt{3}}{3} $$ | $$ \sqrt{3} $$ |
$$ 45° $$ | $$ \frac{\pi}{4} $$ | $$ \frac{\sqrt{2}}{2} $$ | $$ \frac{\sqrt{2}}{2} $$ | $$ 1 $$ | $$ 1 $$ |
$$ 60° $$ | $$ \frac{\pi}{3} $$ | $$ \frac{\sqrt{3}}{2} $$ | $$ \frac{1}{2} $$ | $$ \sqrt{3} $$ | $$ \frac{\sqrt{3}}{3} $$ |
$$ 90° $$ | $$ \frac{\pi}{2} $$ | $$ 1 $$ | $$ 0 $$ | $$ \nexists $$ | $$ 0 $$ |
$$ 180° $$ | $$ \pi $$ | $$ 0 $$ | $$ -1 $$ | $$ 0 $$ | $$ \nexists $$ |
$$ 270° $$ | $$ \frac{3 \pi}{2} $$ | $$ -1 $$ | $$ 0 $$ | $$ \nexists $$ | $$ 0 $$ |
The cosine is a periodic function with a period of 2π.
The Period of Trigonometric Functions
Trigonometric functions repeat at regular intervals, known as their periods.
Some functions share the same period length.
Function | Period |
---|---|
$$ \sin x $$ | $$ 2 \pi $$ |
$$ \cos x $$ | $$ 2 \pi $$ |
$$ \sin (\omega x + \phi) $$ | $$ \frac{2 \pi}{\omega} $$ |
$$ \cos (\omega x + \phi) $$ | $$ \frac{2 \pi}{\omega} $$ |
$$ \tan x $$ | $$ \pi $$ |
$$ \cot x $$ | $$ \pi $$ |
$$ \tan (\omega x + \phi) $$ | $$ \frac{\pi}{\omega} $$ |
$$ \cot (\omega x + \phi) $$ | $$ \frac{\pi}{\omega} $$ |
And so on.