Key Trigonometric Function Values

Key values of trigonometric functions refer to specific sine, cosine, tangent, and cotangent values associated with particular angles (measured in degrees or radians) such as \(0^\circ\), \(30^\circ\), \(45^\circ\), \(60^\circ\), \(90^\circ\), as well as their multiples or other notable combinations.

Why are they important? These values make it easier to solve geometric problems without relying on calculations or numerical approximations. These angles play a fundamental role in trigonometry because they produce clean, exact results, often expressed as fractions or square roots.

Here’s a table highlighting the most important key values of trigonometric functions.

Degrees Radians Sine Cosine Tangent Cotangent
\( 0 \) \( 0 \) \( 1 \) \( 0 \) \( \pm \infty \)
15° \( \frac{\pi}{12} \) \( \frac{\sqrt{6} - \sqrt{2}}{4} \) \( \frac{\sqrt{6} + \sqrt{2}}{4} \) \( 2 - \sqrt{3} \) \( 2 + \sqrt{3} \)
18° \( \frac{\pi}{10} \) \( \frac{\sqrt{5} - 1}{4} \) \( \frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{\sqrt{25 - 10\sqrt{5}}}{5} \) \( \sqrt{5 + 2\sqrt{5}} \)
22° 30' \( \frac{\pi}{8} \) \( \frac{\sqrt{2 - \sqrt{2}}}{2} \) \( \frac{\sqrt{2 + \sqrt{2}}}{2} \) \( \sqrt{2} - 1 \) \( \sqrt{2} + 1 \)
30° \( \frac{\pi}{6} \) \( \frac{1}{2} \) \( \frac{\sqrt{3}}{2} \) \( \frac{\sqrt{3}}{3} \) \( \sqrt{3} \)
36° \( \frac{\pi}{5} \) \( \frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( \frac{\sqrt{5} + 1}{4} \) \( \sqrt{5 - 2\sqrt{5}} \) \( \frac{\sqrt{25 + 10\sqrt{5}}}{5} \)
45° \( \frac{\pi}{4} \) \( \frac{\sqrt{2}}{2} \) \( \frac{\sqrt{2}}{2} \) \( 1 \) \( 1 \)
54° \( \frac{3\pi}{10} \) \( \frac{\sqrt{5} + 1}{4} \) \( \frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( \frac{\sqrt{25 + 10\sqrt{5}}}{5} \) \( \sqrt{5 - 2\sqrt{5}} \)
60° \( \frac{\pi}{3} \) \( \frac{\sqrt{3}}{2} \) \( \frac{1}{2} \) \( \sqrt{3} \) \( \frac{\sqrt{3}}{3} \)
67° 30' \( \frac{3\pi}{8} \) \( \frac{\sqrt{2 + \sqrt{2}}}{2} \) \( \frac{\sqrt{2 - \sqrt{2}}}{2} \) \( \sqrt{2} + 1 \) \( \sqrt{2} - 1 \)
72° \( \frac{2\pi}{5} \) \( \frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{\sqrt{5} - 1}{4} \) \( \sqrt{5 + 2\sqrt{5}} \) \( \frac{\sqrt{25 - 10\sqrt{5}}}{5} \)
75° \( \frac{5\pi}{12} \) \( \frac{\sqrt{6} + \sqrt{2}}{4} \) \( \frac{\sqrt{6} - \sqrt{2}}{4} \) \( 2 + \sqrt{3} \) \( 2 - \sqrt{3} \)
90° \( \frac{\pi}{2} \) \( 1 \) \( 0 \) \( \pm \infty \) \( 0 \)
105° \( \frac{7\pi}{12} \) \( \frac{\sqrt{6} + \sqrt{2}}{4} \) \( \frac{\sqrt{2} - \sqrt{6}}{4} \) \( -2 - \sqrt{3} \) \( \sqrt{3} - 2 \)
108° \( \frac{3\pi}{5} \) \( \frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{1 - \sqrt{5}}{4} \) \( -\sqrt{5 + 2\sqrt{5}} \) \( -\frac{\sqrt{25 - 10\sqrt{5}}}{5} \)
112° 30' \( \frac{5\pi}{8} \) \( \frac{\sqrt{2 + \sqrt{2}}}{2} \) \( -\frac{\sqrt{2 - \sqrt{2}}}{2} \) \( -1 - \sqrt{2} \) \( 1 - \sqrt{2} \)
120° \( \frac{2\pi}{3} \) \( \frac{\sqrt{3}}{2} \) \( -\frac{1}{2} \) \( -\sqrt{3} \) \( -\frac{\sqrt{3}}{3} \)
126° \( \frac{7\pi}{10} \) \( \frac{\sqrt{5} + 1}{4} \) \( -\frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{25 + 10\sqrt{5}}}{5} \) \( -\sqrt{5 - 2\sqrt{5}} \)
135° \( \frac{3\pi}{4} \) \( \frac{\sqrt{2}}{2} \) \( -\frac{\sqrt{2}}{2} \) \( -1 \) \( -1 \)
144° \( \frac{4\pi}{5} \) \( \frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{5} + 1}{4} \) \( -\sqrt{5 - 2\sqrt{5}} \) \( -\frac{\sqrt{25 + 10\sqrt{5}}}{5} \)
150° \( \frac{5\pi}{6} \) \( \frac{1}{2} \) \( -\frac{\sqrt{3}}{2} \) \( -\frac{\sqrt{3}}{3} \) \( -\sqrt{3} \)
157° 30' \( \frac{7\pi}{8} \) \( \frac{\sqrt{2 - \sqrt{2}}}{2} \) \( -\frac{\sqrt{2 + \sqrt{2}}}{2} \) \( 1 - \sqrt{2} \) \( -\sqrt{2} - 1 \)
162° \( \frac{9\pi}{10} \) \( \frac{\sqrt{5} - 1}{4} \) \( -\frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{25 - 10\sqrt{5}}}{5} \) \( -\sqrt{5 + 2\sqrt{5}} \)
165° \( \frac{11\pi}{12} \) \( \frac{\sqrt{6} - \sqrt{2}}{4} \) \( -\frac{\sqrt{6} + \sqrt{2}}{4} \) \( \sqrt{3} - 2 \) \( -\sqrt{3} - 2 \)
180° \( \pi \) \( 0 \) \( -1 \) \( 0 \) \( \pm \infty \)
195° \( \frac{13\pi}{12} \) \( \frac{\sqrt{2} - \sqrt{6}}{4} \) \( -\frac{\sqrt{6} + \sqrt{2}}{4} \) \( 2 - \sqrt{3} \) \( 2 + \sqrt{3} \)
198° \( \frac{11\pi}{10} \) \( \frac{1 - \sqrt{5}}{4} \) \( -\frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{\sqrt{25 - 10\sqrt{5}}}{5} \) \( \sqrt{5 + 2\sqrt{5}} \)
202° 30' \( \frac{9\pi}{8} \) \( -\frac{\sqrt{2 - \sqrt{2}}}{2} \) \( -\frac{\sqrt{2 + \sqrt{2}}}{2} \) \( \sqrt{2} - 1 \) \( \sqrt{2} + 1 \)
210° \( \frac{7\pi}{6} \) \( -\frac{1}{2} \) \( -\frac{\sqrt{3}}{2} \) \( \frac{\sqrt{3}}{3} \) \( \sqrt{3} \)
216° \( \frac{6\pi}{5} \) \( -\frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{5} + 1}{4} \) \( \sqrt{5 - 2\sqrt{5}} \) \( \frac{\sqrt{25 + 10\sqrt{5}}}{5} \)
225° \( \frac{5\pi}{4} \) \( -\frac{\sqrt{2}}{2} \) \( -\frac{\sqrt{2}}{2} \) \( 1 \) \( 1 \)
234° \( \frac{13\pi}{10} \) \( -\frac{\sqrt{5} + 1}{4} \) \( -\frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( \frac{\sqrt{25 + 10\sqrt{5}}}{5} \) \( \sqrt{5 - 2\sqrt{5}} \)
240° \( \frac{4\pi}{3} \) \( -\frac{\sqrt{3}}{2} \) \( -\frac{1}{2} \) \( \sqrt{3} \) \( \frac{\sqrt{3}}{3} \)
247° 30' \( \frac{11\pi}{8} \) \( -\frac{\sqrt{2 + \sqrt{2}}}{2} \) \( -\frac{\sqrt{2 - \sqrt{2}}}{2} \) \( \sqrt{2} + 1 \) \( \sqrt{2} - 1 \)
252° \( \frac{7\pi}{5} \) \( -\frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{1 - \sqrt{5}}{4} \) \( \sqrt{5 + 2\sqrt{5}} \) \( \frac{\sqrt{25 - 10\sqrt{5}}}{5} \)
255° \( \frac{17\pi}{12} \) \( -\frac{\sqrt{6} + \sqrt{2}}{4} \) \( \frac{\sqrt{2} - \sqrt{6}}{4} \) \( 2 + \sqrt{3} \) \( 2 - \sqrt{3} \)
270° \( \frac{3\pi}{2} \) \( -1 \) \( 0 \) \( \pm \infty \) \( 0 \)
285° \( \frac{19\pi}{12} \) \( -\frac{\sqrt{6} + \sqrt{2}}{4} \) \( \frac{\sqrt{6} - \sqrt{2}}{4} \) \( -2 - \sqrt{3} \) \( \sqrt{3} - 2 \)
288° \( \frac{8\pi}{5} \) \( -\frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( \frac{\sqrt{5} - 1}{4} \) \( -\sqrt{5 + 2\sqrt{5}} \) \( -\frac{\sqrt{25 - 10\sqrt{5}}}{5} \)
292° 30' \( \frac{13\pi}{8} \) \( -\frac{\sqrt{2 + \sqrt{2}}}{2} \) \( \frac{\sqrt{2 - \sqrt{2}}}{2} \) \( -1 - \sqrt{2} \) \( 1 - \sqrt{2} \)
300° \( \frac{5\pi}{3} \) \( -\frac{\sqrt{3}}{2} \) \( \frac{1}{2} \) \( -\sqrt{3} \) \( -\frac{\sqrt{3}}{3} \)
306° \( \frac{17\pi}{10} \) \( -\frac{\sqrt{5} + 1}{4} \) \( \frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{25 + 10\sqrt{5}}}{5} \) \( -\sqrt{5 - 2\sqrt{5}} \)
315° \( \frac{7\pi}{4} \) \( -\frac{\sqrt{2}}{2} \) \( \frac{\sqrt{2}}{2} \) \( -1 \) \( -1 \)
324° \( \frac{9\pi}{5} \) \( -\frac{\sqrt{10 - 2\sqrt{5}}}{4} \) \( \frac{\sqrt{5} + 1}{4} \) \( -\sqrt{5 - 2\sqrt{5}} \) \( -\frac{\sqrt{25 + 10\sqrt{5}}}{5} \)
330° \( \frac{11\pi}{6} \) \( -\frac{1}{2} \) \( \frac{\sqrt{3}}{2} \) \( -\frac{\sqrt{3}}{3} \) \( -\sqrt{3} \)
337° 30' \( \frac{15\pi}{8} \) \( -\frac{\sqrt{2 - \sqrt{2}}}{2} \) \( \frac{\sqrt{2 + \sqrt{2}}}{2} \) \( 1 - \sqrt{2} \) \( -1 - \sqrt{2} \)
342° \( \frac{19\pi}{10} \) \( \frac{1 - \sqrt{5}}{4} \) \( \frac{\sqrt{10 + 2\sqrt{5}}}{4} \) \( -\frac{\sqrt{25 - 10\sqrt{5}}}{5} \) \( -\sqrt{5 + 2\sqrt{5}} \)
345° \( \frac{23\pi}{12} \) \( \frac{\sqrt{2} - \sqrt{6}}{4} \) \( \frac{\sqrt{2} + \sqrt{6}}{4} \) \( \sqrt{3} - 2 \) \( -2 - \sqrt{3} \)
360° \( 2\pi \) \( 0 \) \( 1 \) \( 0 \) \( \pm \infty \)

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous