Tangent Addition Formula

The formula for the tangent of the sum of two angles is: $$ \tan(\alpha + \beta) = \frac{ \tan \alpha + \tan \beta }{1- \tan \alpha \tan \beta } $$

It's important to remember that the tangent of the sum of two angles is not simply the sum of the tangents of the individual angles:

$$ \tan(\alpha + \beta) \ne \tan \alpha + \tan \beta $$

Note: This formula is valid within the domain of the tangent function. Therefore, the sum of the angles α+β must not be equal to ±90° + k·180°, where k is any integer. In radians, the condition is: $$ \alpha + \beta \ne \frac{\pi}{2} + k \cdot \pi \ \ \ \ \forall \ k \in Z $$

A Practical Example

Let’s take the tangents of two angles, a=30° and b=60°:

$$ \tan a = \tan 30° = \frac{\sqrt{3}}{3} $$

$$ \tan b = \tan 60° = \sqrt{3} $$

The tangent of their sum, a+b, is the tangent of 90°, which is undefined.

$$ \tan (a+b) = \tan(30°+60°) = \tan(90°) = \nexists $$

Note: However, if we add the individual tangents, we get a finite value: $$ \tan a + \tan b = \tan 30° + \tan 60° = \frac{\sqrt{3}}{3} + \sqrt{3} = \frac{\sqrt{3}+3 \sqrt{3}}{3} $$ This demonstrates what was mentioned earlier: the sum of the tangents of two angles is not equal to the tangent of the sum of the angles. $$ a + b \ne \frac{\pi}{2} + k \cdot \pi \ \ \ \ \forall \ k \in Z $$

To find the tangent of the sum of these angles, we need to use the tangent addition formula:

$$ \tan (a+b) = \frac{ \tan a + \tan b }{1-\tan a \tan b} $$

Where a=30° and b=60°.

$$ \tan (30°+60°) = \frac{ \tan 30° + \tan 60° }{1-\tan 30° \tan 60°} $$

$$ \tan (30°+60°) = \frac{ \frac{\sqrt{3}}{3} + \sqrt{3} }{1-\frac{\sqrt{3}}{3} \cdot \sqrt{3}} $$

$$ \tan (30°+60°) = \frac{ \frac{\sqrt{3} + 3\sqrt{3}}{3}}{1-\frac{3}{3}} $$

$$ \tan (30°+60°) = \frac{ \frac{\sqrt{3} + 3\sqrt{3}}{3}}{1-1} $$

$$ \tan (30°+60°) = \frac{ \frac{\sqrt{3} + 3\sqrt{3}}{3}}{0} $$

This is division by zero, which means the tangent is undefined.

$$ \tan (30°+60°) = \nexists $$

Therefore, the result is correct.

The Proof

The tangent of an angle x is the ratio of the sine to the cosine of that angle:

$$ \tan x = \frac{\sin x}{\cos x} $$

Now, let's consider the angle x = a+b, the sum of two angles a and b:

$$ \tan (a+b) = \frac{\sin (a+b)}{\cos (a+b)} $$

We apply the sine addition formula to the numerator:

$$ \tan (a+b) = \frac{\sin a \cos b + \sin b \cos a}{\cos (a+b)} $$

And we apply the cosine addition formula to the denominator:

$$ \tan (a+b) = \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b} $$

Now, divide both the numerator and denominator by cos(a)·cos(b):

$$ \tan (a+b) = \frac{ \frac{ \sin a \cos b + \sin b \cos a }{ \cos a \cos b } }{ \frac{ \cos a \cos b - \sin a \sin b }{ \cos a \cos b } } $$

$$ \tan (a+b) = \frac{ \frac{ \sin a \cos b}{ \cos a \cos b } + \frac{\sin b \cos a }{ \cos a \cos b }}{ \frac{ \cos a \cos b }{ \cos a \cos b } - \frac{ \sin a \sin b }{ \cos a \cos b } } $$

$$ \tan (a+b) = \frac{ \frac{ \sin a}{ \cos a } + \frac{\sin b }{ \cos b } }{1 - \frac{ \sin a }{ \cos a } \cdot \frac{ \sin b }{\cos b } } $$

Since we know that tan(a) = sin(a)/cos(a):

$$ \tan (a+b) = \frac{ \tan a + \frac{\sin b }{ \cos b } }{1 - \tan a \cdot \frac{ \sin b }{\cos b } } $$

And that tan(b) = sin(b)/cos(b):

$$ \tan (a+b) = \frac{ \tan a + \tan b }{1 - \tan a \cdot \tan b } $$

This gives us the formula we wanted to prove.

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous