Cube of a Binomial

The cube of a binomial, (a + b)3, expands into a four-term expression known as a quadrinomial. It consists of the sum of the cubes of the two terms, plus three times the product of the square of the first term and the second, plus three times the product of the square of the second term and the first: $$ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $$

A Practical Example

Example 1

Let’s compute the cube of a binomial:

$$ (2a + 4b)^3 $$

Applying the formula directly:

$$ (2a + 4b)^3 = (2a)^3 + 3 \cdot (2a)^2 \cdot (4b) + 3 \cdot (2a) \cdot (4b)^2 + (4b)^3 $$

We simplify each term step by step:

$$ = 8a^3 + 3 \cdot 4a^2 \cdot 4b + 3 \cdot 2a \cdot 16b^2 + 64b^3 $$

$$ = 8a^3 + (3 \cdot 4 \cdot 4) \cdot a^2b + (3 \cdot 2 \cdot 16) \cdot ab^2 + 64b^3 $$

$$ = 8a^3 + 48a^2b + 96ab^2 + 64b^3 $$

Example 2

Now consider a binomial with a negative second term:

$$ (2a - 3b)^3 $$

Using the same approach:

$$ (2a - 3b)^3 = (2a)^3 + 3 \cdot (2a)^2 \cdot (-3b) + 3 \cdot (2a) \cdot (-3b)^2 + (-3b)^3 $$

Now simplify each component:

$$ = 8a^3 + 3 \cdot 4a^2 \cdot (-3b) + 3 \cdot 2a \cdot 9b^2 - 27b^3 $$

$$ = 8a^3 + (3 \cdot 4 \cdot -3) \cdot a^2b + (3 \cdot 2 \cdot 9) \cdot ab^2 - 27b^3 $$

$$ = 8a^3 - 36a^2b + 54ab^2 - 27b^3 $$

The Proof

To prove the formula, we start by observing that the cube of a binomial means multiplying it by itself three times:

$$ (a + b)^3 = (a + b) \cdot (a + b) \cdot (a + b) $$

This is equivalent to multiplying the binomial by its square:

$$ (a + b)^3 = (a + b)^2 \cdot (a + b) $$

The expansion of (a + b)^2 is already known (see proof):

$$ (a + b)^2 = a^2 + 2ab + b^2 $$

So the cube becomes:

$$ (a + b)^3 = (a^2 + 2ab + b^2) \cdot (a + b) $$

Now distribute each term:

$$ = (a^2 + 2ab + b^2) \cdot a + (a^2 + 2ab + b^2) \cdot b $$

$$ = a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3 $$

Combining like terms:

$$ = a^3 + (2a^2b + a^2b) + (ab^2 + 2ab^2) + b^3 $$

$$ = a^3 + 3a^2b + 3ab^2 + b^3 $$

This completes the derivation of the binomial cube formula.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Polynomials