Basic Indefinite Integrals

Here is a list of commonly used basic indefinite integrals:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c \qquad \text{for } n \ne -1$$

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln |x| + c$$

$$\int \frac{1}{x} \, dx = \ln |x| + c$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + c \qquad \text{for } a > 0,\, a \ne 1$$

$$\int e^x \, dx = e^x + c$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + c$$

$$\int \frac{1}{\sin^2 x} \, dx = -\cot x + c$$

$$\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left( \frac{x}{a} \right) + c \qquad \text{for } a > 0$$

$$\int \frac{1}{1 + x^2} \, dx = \arctan x + c$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \cdot \arctan\left( \frac{x}{a} \right) + c \qquad \text{for } a > 0$$

From these formulas, we can also derive a number of generalized integrals involving composite functions:

$$\int f(x)^n \cdot f'(x) \, dx = \frac{f(x)^{n+1}}{n+1} + c \qquad \text{for } n \ne -1$$

$$\int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + c$$

$$\int a^{f(x)} \cdot f'(x) \, dx = \frac{a^{f(x)}}{\ln a} + c \qquad \text{for } a > 0,\, a \ne 1$$

$$\int e^{f(x)} \cdot f'(x) \, dx = e^{f(x)} + c$$

$$\int \sin(f(x)) \cdot f'(x) \, dx = -\cos(f(x)) + c$$

$$\int \cos(f(x)) \cdot f'(x) \, dx = \sin(f(x)) + c$$

$$\int \frac{f'(x)}{\cos^2(f(x))} \, dx = \tan(f(x)) + c$$

$$\int \frac{f'(x)}{\sin^2(f(x))} \, dx = -\cot(f(x)) + c$$

$$\int \frac{f'(x)}{\sqrt{1 - f(x)^2}} \, dx = \arcsin(f(x)) + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - f(x)^2}} \, dx = \arcsin\left( \frac{f(x)}{a} \right) + c \qquad \text{for } a > 0$$

$$\int \frac{f'(x)}{1 + f(x)^2} \, dx = \arctan(f(x)) + c$$

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration