Integral Calculation - Exercise 14
We’re asked to evaluate the following indefinite integral:
$$ \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{\sqrt{x}} \ dx $$
To simplify the integrand, we start with a substitution:
$$ t = \sqrt{x} $$
Next, we compute the differential of both sides:
$$ dt = \frac{1}{2 \cdot \sqrt{x}} \ dx $$
To match this form, we multiply and divide the original integrand by 2:
$$ \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{\sqrt{x}} \cdot \frac{2}{2} \ dx $$
$$ = 2 \cdot \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{2 \cdot \sqrt{x}} \ dx $$
Now we can replace \( \frac{1}{2 \cdot \sqrt{x}} \ dx \) with \( dt \):
$$ = 2 \cdot \int e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}}) \ dt $$
Substituting \( t = \sqrt{x} \), the integral becomes:
$$ 2 \cdot \int e^t \cdot \cos(e^t) \ dt $$
We now perform a second substitution to simplify further:
$$ u = e^t $$
Differentiating both sides:
$$ du = e^t \ dt $$
This allows us to rewrite the integral as:
$$ 2 \cdot \int \cos(e^t) \cdot e^t \ dt = 2 \cdot \int \cos(u) \ du $$
Now we integrate:
$$ 2 \cdot \sin(u) + c $$
Substituting back \( u = e^t \):
$$ 2 \cdot \sin(e^t) + c $$
And finally, recalling that \( t = \sqrt{x} \):
$$ 2 \cdot \sin(e^{\sqrt{x}}) + c $$
This is the solution to the integral.
And so on...
