Integral Calculation - Exercise 14

We’re asked to evaluate the following indefinite integral:

$$ \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{\sqrt{x}} \ dx $$

To simplify the integrand, we start with a substitution:

$$ t = \sqrt{x} $$

Next, we compute the differential of both sides:

$$ dt = \frac{1}{2 \cdot \sqrt{x}} \ dx $$

To match this form, we multiply and divide the original integrand by 2:

$$ \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{\sqrt{x}} \cdot \frac{2}{2} \ dx $$

$$ = 2 \cdot \int \frac{e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}})}{2 \cdot \sqrt{x}} \ dx $$

Now we can replace \( \frac{1}{2 \cdot \sqrt{x}} \ dx \) with \( dt \):

$$ = 2 \cdot \int e^{\sqrt{x}} \cdot \cos(e^{\sqrt{x}}) \ dt $$

Substituting \( t = \sqrt{x} \), the integral becomes:

$$ 2 \cdot \int e^t \cdot \cos(e^t) \ dt $$

We now perform a second substitution to simplify further:

$$ u = e^t $$

Differentiating both sides:

$$ du = e^t \ dt $$

This allows us to rewrite the integral as:

$$ 2 \cdot \int \cos(e^t) \cdot e^t \ dt = 2 \cdot \int \cos(u) \ du $$

Now we integrate:

$$ 2 \cdot \sin(u) + c $$

Substituting back \( u = e^t \):

$$ 2 \cdot \sin(e^t) + c $$

And finally, recalling that \( t = \sqrt{x} \):

$$ 2 \cdot \sin(e^{\sqrt{x}}) + c $$

This is the solution to the integral.

And so on...

 

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration