Integral Calculation - Exercise 20
We are asked to evaluate the following indefinite integral:
$$ \int \frac{\sin x + \cos x}{\sin x - \cos x} \ dx $$
We’ll use the differential method, focusing on the expression \( \sin x - \cos x \) as a substitution candidate.
First, compute its differential:
$$ d( \sin x - \cos x ) = ( \cos x + \sin x ) \ dx $$
Now, solve for dx by dividing both sides by \( \cos x + \sin x \):
$$ \frac{ d( \sin x - \cos x ) }{ \cos x + \sin x } = dx $$
We substitute this expression for dx back into the integral:
$$ \int \frac{\sin x + \cos x}{\sin x - \cos x} \cdot \left[ \frac{ d( \sin x - \cos x ) }{ \cos x + \sin x } \right] $$
This allows us to cancel the numerator and denominator:
$$ \int \frac{1}{\sin x - \cos x} \cdot d( \sin x - \cos x ) $$
Next, let’s set a new variable: \( t = \sin(x) - \cos(x) \).
$$ \int \frac{1}{t} \ dt $$
This is a standard form, whose antiderivative is:
$$ \int \frac{1}{t} \ dt = \log |t| + c $$
Substituting back \( t = \sin(x) - \cos(x) \), we obtain:
$$ \log | \sin x - \cos x | + c $$
So the final solution is:
$$ \int \frac{\sin x + \cos x}{\sin x - \cos x} \ dx = \log | \sin x - \cos x | + c $$
Alternative Solution
Here’s a quicker method, suggested by a user.
$$ \int \frac{\sin x + \cos x}{\sin x - \cos x} \ dx $$
Notice that the numerator \( \sin(x) + \cos(x) \) is exactly the derivative of the denominator \( \sin(x) - \cos(x) \).
This allows us to apply one of the standard integration rules directly:
$$ \int \frac{f'(x)}{f(x)} \ dx = \log |f(x)| + c $$
(Here, "log" refers to the natural logarithm, i.e., ln.)
This means the integrand is the derivative of the composite function \( \log[\sin(x) - \cos(x)] \).
To confirm this, differentiate explicitly:
$$ \frac{d}{dx} \log[\sin(x) - \cos(x)] = \frac{1}{\sin(x) - \cos(x)} \cdot \frac{d}{dx}[\sin(x) - \cos(x)] $$
$$ = \frac{1}{\sin(x) - \cos(x)} \cdot [\cos(x) + \sin(x)] $$
$$ = \frac{\sin(x) + \cos(x)}{\sin(x) - \cos(x)} $$
Therefore, we once again conclude:
$$ \int \frac{\sin x + \cos x}{\sin x - \cos x} \ dx = \log | \sin x - \cos x | + c $$
And so on...
