Integral Calculation - Exercise 31

We’re asked to evaluate the indefinite integral:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$

There are several possible approaches.

Method 1

We begin with the integral:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$

Using the substitution method, we introduce a new variable: \( t = \sqrt{x} \).

$$ t = \sqrt{x} $$

We compute the differential:

$$ dt = d( \sqrt{x} ) = \frac{1}{2 \sqrt{x}} \ dx $$

Solving for \( dx \):

$$ dx = 2 \sqrt{x} \ dt $$

Now substitute into the original integral:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \cdot (2 \sqrt{x} \ dt) $$

The \( \sqrt{x} \) terms cancel out:

$$ \int 2 \cos \sqrt{x} \ dt $$

Since \( t = \sqrt{x} \), we rewrite the integrand in terms of \( t \):

$$ 2 \int \cos t \ dt $$

The integral of \( \cos t \) is \( \sin t + c \), so we get:

$$ 2 \sin(t) + c $$

Finally, substituting back \( t = \sqrt{x} \):

$$ 2 \sin(\sqrt{x}) + c $$

This is the solution.

Method 2

Once again, we aim to solve:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$

We make the substitution \( t = \sqrt{x} \):

$$ t = \sqrt{x} $$

Then compute the differential:

$$ dt = \frac{1}{2 \sqrt{x}} \ dx $$

From this we deduce:

$$ \frac{1}{\sqrt{x}} \ dx = 2 dt $$

Substituting into the integral:

$$ \int \cos \sqrt{x} \cdot \frac{1}{\sqrt{x}} \ dx = \int \cos \sqrt{x} \cdot (2 \ dt) $$

Which simplifies to:

$$ 2 \int \cos \sqrt{x} \ dt $$

Replacing \( \sqrt{x} \) with \( t \):

$$ 2 \int \cos t \ dt = 2 \sin t + c $$

Substitute back \( t = \sqrt{x} \):

$$ 2 \sin(\sqrt{x}) + c $$

This confirms the same result.

Method 3

We again consider the integral:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$

Observe that the derivative of \( \sin(\sqrt{x}) \) is:

$$ \frac{d}{dx} [\sin(\sqrt{x})] = \cos(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} $$

Multiplying both sides by 2:

$$ 2 \cdot d(\sin(\sqrt{x})) = \frac{\cos(\sqrt{x})}{\sqrt{x}} \ dx $$

So we can rewrite the integral as:

$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx = \int 2 \cdot d(\sin(\sqrt{x})) $$

Which becomes:

$$ 2 \int d(\sin(\sqrt{x})) $$

Letting \( t = \sin(\sqrt{x}) \):

$$ 2 \int dt = 2t + c $$

Substituting back:

$$ 2 \sin(\sqrt{x}) + c $$

Once again, we arrive at the same result.

And so on...

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration