Integral Calculation - Exercise 31
We’re asked to evaluate the indefinite integral:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$
There are several possible approaches.
Method 1
We begin with the integral:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$
Using the substitution method, we introduce a new variable: \( t = \sqrt{x} \).
$$ t = \sqrt{x} $$
We compute the differential:
$$ dt = d( \sqrt{x} ) = \frac{1}{2 \sqrt{x}} \ dx $$
Solving for \( dx \):
$$ dx = 2 \sqrt{x} \ dt $$
Now substitute into the original integral:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \cdot (2 \sqrt{x} \ dt) $$
The \( \sqrt{x} \) terms cancel out:
$$ \int 2 \cos \sqrt{x} \ dt $$
Since \( t = \sqrt{x} \), we rewrite the integrand in terms of \( t \):
$$ 2 \int \cos t \ dt $$
The integral of \( \cos t \) is \( \sin t + c \), so we get:
$$ 2 \sin(t) + c $$
Finally, substituting back \( t = \sqrt{x} \):
$$ 2 \sin(\sqrt{x}) + c $$
This is the solution.
Method 2
Once again, we aim to solve:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$
We make the substitution \( t = \sqrt{x} \):
$$ t = \sqrt{x} $$
Then compute the differential:
$$ dt = \frac{1}{2 \sqrt{x}} \ dx $$
From this we deduce:
$$ \frac{1}{\sqrt{x}} \ dx = 2 dt $$
Substituting into the integral:
$$ \int \cos \sqrt{x} \cdot \frac{1}{\sqrt{x}} \ dx = \int \cos \sqrt{x} \cdot (2 \ dt) $$
Which simplifies to:
$$ 2 \int \cos \sqrt{x} \ dt $$
Replacing \( \sqrt{x} \) with \( t \):
$$ 2 \int \cos t \ dt = 2 \sin t + c $$
Substitute back \( t = \sqrt{x} \):
$$ 2 \sin(\sqrt{x}) + c $$
This confirms the same result.
Method 3
We again consider the integral:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx $$
Observe that the derivative of \( \sin(\sqrt{x}) \) is:
$$ \frac{d}{dx} [\sin(\sqrt{x})] = \cos(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} $$
Multiplying both sides by 2:
$$ 2 \cdot d(\sin(\sqrt{x})) = \frac{\cos(\sqrt{x})}{\sqrt{x}} \ dx $$
So we can rewrite the integral as:
$$ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \ dx = \int 2 \cdot d(\sin(\sqrt{x})) $$
Which becomes:
$$ 2 \int d(\sin(\sqrt{x})) $$
Letting \( t = \sin(\sqrt{x}) \):
$$ 2 \int dt = 2t + c $$
Substituting back:
$$ 2 \sin(\sqrt{x}) + c $$
Once again, we arrive at the same result.
And so on...
