Integral Calculation Exercise 16
We are asked to evaluate the following integral:
$$ \int \frac{x - 2}{x^3 - 7x - 6} \, dx $$
To begin, we factor the denominator using Ruffini’s synthetic division.
Since the polynomial \( x^3 - 7x - 6 \) has a root at \( x = 3 \), it is divisible by \( (x - 3) \).
Performing the division:
$$ \begin{array}{c|lcc|r} & 1 & 0 & -7 & -6 \\ 3 & & 3 & 9 & 6 \\ \hline & 1 & 3 & 2 & 0 \end{array} $$
This gives us the factorization:
$$ x^3 - 7x - 6 = (x - 3)(x^2 + 3x + 2) $$
Next, we factor the quadratic:
$$ x^2 + 3x + 2 = (x + 1)(x + 2) $$
Substituting into the integral, we obtain:
$$ \int \frac{x - 2}{(x - 3)(x + 2)(x + 1)} \, dx $$
We now apply partial fraction decomposition:
$$ \frac{x - 2}{(x - 3)(x + 2)(x + 1)} = \frac{A}{x - 3} + \frac{B}{x + 2} + \frac{C}{x + 1} $$
Multiplying through by the common denominator:
$$ x - 2 = A(x + 2)(x + 1) + B(x - 3)(x + 1) + C(x - 3)(x + 2) $$
Expanding each term:
$$ A(x^2 + 3x + 2) + B(x^2 - 2x - 3) + C(x^2 - x - 6) $$
Combining like terms:
$$ (A + B + C)x^2 + (3A - 2B - C)x + (2A - 3B - 6C) $$
We now compare coefficients with the original numerator \( x - 2 \). This gives us the system:
- A + B + C = 0 (since there is no \( x^2 \) term on the left-hand side)
- 3A - 2B - C = 1 (coefficient of \( x \))
- 2A - 3B - 6C = -2 (constant term)
Solving the system using substitution: From the first equation, we have \( A = -B - C \).
Substitute into the other two equations:
$$ 3(-B - C) - 2B - C = 1 \quad \Rightarrow \quad -5B - 4C = 1 $$
$$ 2(-B - C) - 3B - 6C = -2 \quad \Rightarrow \quad -5B - 8C = -2 $$
Subtracting the first from the second:
$$ (-5B - 8C) - (-5B - 4C) = -2 - 1 \quad \Rightarrow \quad -4C = -3 \quad \Rightarrow \quad C = \frac{3}{4} $$
Substitute back to find \( B \):
$$ -5B - 4 \cdot \frac{3}{4} = 1 \quad \Rightarrow \quad -5B - 3 = 1 \quad \Rightarrow \quad B = -\frac{4}{5} $$
Now solve for \( A \):
$$ A = -B - C = -(-\frac{4}{5}) - \frac{3}{4} = \frac{4}{5} - \frac{3}{4} = \frac{1}{20} $$
We now rewrite the integral as:
$$ \int \frac{1}{20(x - 3)} - \frac{4}{5(x + 2)} + \frac{3}{4(x + 1)} \, dx $$
By linearity, this becomes:
$$ \frac{1}{20} \int \frac{1}{x - 3} \, dx - \frac{4}{5} \int \frac{1}{x + 2} \, dx + \frac{3}{4} \int \frac{1}{x + 1} \, dx $$
Each integral is elementary:
- \( \int \frac{1}{x - 3} \, dx = \log|x - 3| + c \)
- \( \int \frac{1}{x + 2} \, dx = \log|x + 2| + c \)
- \( \int \frac{1}{x + 1} \, dx = \log|x + 1| + c \)
Therefore, the final result is:
$$ \int \frac{x - 2}{x^3 - 7x - 6} \, dx = \frac{1}{20} \log|x - 3| - \frac{4}{5} \log|x + 2| + \frac{3}{4} \log|x + 1| + c $$
And so on.
