Integral Calculation Exercise 26

We want to evaluate the integral

$$ \int \cot (ax+b) \ dx $$

We’ll use substitution, introducing the auxiliary variable u = ax + b:

$$ u = ax + b $$

Taking the differential:

$$ du = a \ dx $$

Solving for \( dx \):

$$ dx = \frac{1}{a} \ du $$

Substituting dx = \(\frac{1}{a} \, du\) into the integral gives:

$$ \int \cot (ax + b) \cdot \frac{1}{a} \ du $$

Now, replacing \( ax + b \) with \( u \):

$$ \int \cot (u) \cdot \frac{1}{a} \ du $$

Since \( \frac{1}{a} \) is a constant, we can factor it out:

$$ \frac{1}{a} \int \cot (u) \ du $$

Recall that \( \cot(u) = \frac{\cos(u)}{\sin(u)} \), so the integral becomes:

$$ \frac{1}{a} \int \frac{\cos(u)}{\sin(u)} \ du $$

We now perform a second substitution by letting t = \(\sin(u)\):

$$ t = \sin(u) $$

Then:

$$ dt = \cos(u) \ du $$

Solving for \( du \):

$$ du = \frac{1}{\cos(u)} \ dt $$

Substituting into the integral:

$$ \frac{1}{a} \int \frac{\cos(u)}{\sin(u)} \cdot \frac{1}{\cos(u)} \ dt $$

$$ \frac{1}{a} \int \frac{1}{\sin(u)} \ dt $$

Now replacing \( \sin(u) \) with \( t \):

$$ \frac{1}{a} \int \frac{1}{t} \ dt $$

This is a basic integral: \( \int \frac{1}{t} dt = \log |t| + C \)

So we have:

$$ \frac{1}{a} \log |t| + C $$

Since \( t = \sin(u) \), we substitute back:

$$ \frac{1}{a} \log |\sin(u)| + C $$

And finally, replacing \( u = ax + b \):

$$ \frac{1}{a} \log |\sin(ax + b)| + C $$

This is the final expression for the antiderivative.

And that completes the solution.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration