Integral Calculation Exercise 26
We want to evaluate the integral
$$ \int \cot (ax+b) \ dx $$
We’ll use substitution, introducing the auxiliary variable u = ax + b:
$$ u = ax + b $$
Taking the differential:
$$ du = a \ dx $$
Solving for \( dx \):
$$ dx = \frac{1}{a} \ du $$
Substituting dx = \(\frac{1}{a} \, du\) into the integral gives:
$$ \int \cot (ax + b) \cdot \frac{1}{a} \ du $$
Now, replacing \( ax + b \) with \( u \):
$$ \int \cot (u) \cdot \frac{1}{a} \ du $$
Since \( \frac{1}{a} \) is a constant, we can factor it out:
$$ \frac{1}{a} \int \cot (u) \ du $$
Recall that \( \cot(u) = \frac{\cos(u)}{\sin(u)} \), so the integral becomes:
$$ \frac{1}{a} \int \frac{\cos(u)}{\sin(u)} \ du $$
We now perform a second substitution by letting t = \(\sin(u)\):
$$ t = \sin(u) $$
Then:
$$ dt = \cos(u) \ du $$
Solving for \( du \):
$$ du = \frac{1}{\cos(u)} \ dt $$
Substituting into the integral:
$$ \frac{1}{a} \int \frac{\cos(u)}{\sin(u)} \cdot \frac{1}{\cos(u)} \ dt $$
$$ \frac{1}{a} \int \frac{1}{\sin(u)} \ dt $$
Now replacing \( \sin(u) \) with \( t \):
$$ \frac{1}{a} \int \frac{1}{t} \ dt $$
This is a basic integral: \( \int \frac{1}{t} dt = \log |t| + C \)
So we have:
$$ \frac{1}{a} \log |t| + C $$
Since \( t = \sin(u) \), we substitute back:
$$ \frac{1}{a} \log |\sin(u)| + C $$
And finally, replacing \( u = ax + b \):
$$ \frac{1}{a} \log |\sin(ax + b)| + C $$
This is the final expression for the antiderivative.
And that completes the solution.
