Integral Calculation Exercise 32

Let’s evaluate the following integral:

$$ \int \frac{1}{\tan^3(x)} \ dx $$

Since the tangent function is defined as the ratio of sine to cosine, tan = sin / cos, we can rewrite the integrand accordingly:

$$ \int \frac{1}{ \frac{\sin^3(x)}{\cos^3(x)} } \ dx $$

Using the rule for dividing fractions, we multiply the expression by \( \frac{\cos^3(x)}{\sin^3(x)} \) over itself to simplify:

$$ \int \frac{1}{ \frac{\sin^3(x)}{\cos^3(x)} } \cdot \frac{ \frac{\cos^3(x)}{\sin^3(x)} }{ \frac{\cos^3(x)}{\sin^3(x)} } \ dx $$

After simplifying, we’re left with:

$$ \int \frac{\cos^3(x)}{\sin^3(x)} \ dx $$

Now, apply the Pythagorean identity \( \cos^2(x) + \sin^2(x) = 1 \), which allows us to write:

\( \cos^2(x) = 1 - \sin^2(x) \)

So we express the integrand as:

$$ \int \frac{\cos^2(x) \cdot \cos(x)}{\sin^3(x)} \ dx $$

$$ \int \frac{[1 - \sin^2(x)] \cdot \cos(x)}{\sin^3(x)} \ dx $$

At this point, we make the substitution \( u = \sin(x) \):

$$ u = \sin(x) $$

Then compute the differential:

$$ du = \cos(x) \ dx $$

Substituting into the integral, we obtain:

$$ \int \frac{(1 - u^2) \cdot \cos(x)}{u^3} \ dx $$

$$ \int \frac{1 - u^2}{u^3} \cdot \cos(x) \ dx $$

Now, substitute \( \cos(x) dx = du \):

$$ \int \frac{1 - u^2}{u^3} \ du $$

Split the fraction into two simpler terms:

$$ \int \left( \frac{1}{u^3} - \frac{u^2}{u^3} \right) \ du $$

$$ \int \left( \frac{1}{u^3} - \frac{1}{u} \right) \ du $$

Which becomes:

$$ \int u^{-3} \ du - \int \frac{1}{u} \ du $$

The second integral is a standard logarithmic form:

\( \int \frac{1}{u} \ du = \log |u| + C \)

The first is a power function:

\( \int u^{-3} \ du = \frac{u^{-2}}{-2} + C \)

Putting it all together:

$$ \frac{u^{-2}}{-2} - \log |u| + C $$

$$ -\frac{1}{2u^2} - \log |u| + C $$

Finally, substituting back \( u = \sin(x) \):

$$ -\frac{1}{2 \sin^2(x)} - \log | \sin(x) | + C $$

This is the final result of the integral.

And that concludes the calculation.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration