Integral Calculation Exercise 32
Let’s evaluate the following integral:
$$ \int \frac{1}{\tan^3(x)} \ dx $$
Since the tangent function is defined as the ratio of sine to cosine, tan = sin / cos, we can rewrite the integrand accordingly:
$$ \int \frac{1}{ \frac{\sin^3(x)}{\cos^3(x)} } \ dx $$
Using the rule for dividing fractions, we multiply the expression by \( \frac{\cos^3(x)}{\sin^3(x)} \) over itself to simplify:
$$ \int \frac{1}{ \frac{\sin^3(x)}{\cos^3(x)} } \cdot \frac{ \frac{\cos^3(x)}{\sin^3(x)} }{ \frac{\cos^3(x)}{\sin^3(x)} } \ dx $$
After simplifying, we’re left with:
$$ \int \frac{\cos^3(x)}{\sin^3(x)} \ dx $$
Now, apply the Pythagorean identity \( \cos^2(x) + \sin^2(x) = 1 \), which allows us to write:
\( \cos^2(x) = 1 - \sin^2(x) \)
So we express the integrand as:
$$ \int \frac{\cos^2(x) \cdot \cos(x)}{\sin^3(x)} \ dx $$
$$ \int \frac{[1 - \sin^2(x)] \cdot \cos(x)}{\sin^3(x)} \ dx $$
At this point, we make the substitution \( u = \sin(x) \):
$$ u = \sin(x) $$
Then compute the differential:
$$ du = \cos(x) \ dx $$
Substituting into the integral, we obtain:
$$ \int \frac{(1 - u^2) \cdot \cos(x)}{u^3} \ dx $$
$$ \int \frac{1 - u^2}{u^3} \cdot \cos(x) \ dx $$
Now, substitute \( \cos(x) dx = du \):
$$ \int \frac{1 - u^2}{u^3} \ du $$
Split the fraction into two simpler terms:
$$ \int \left( \frac{1}{u^3} - \frac{u^2}{u^3} \right) \ du $$
$$ \int \left( \frac{1}{u^3} - \frac{1}{u} \right) \ du $$
Which becomes:
$$ \int u^{-3} \ du - \int \frac{1}{u} \ du $$
The second integral is a standard logarithmic form:
\( \int \frac{1}{u} \ du = \log |u| + C \)
The first is a power function:
\( \int u^{-3} \ du = \frac{u^{-2}}{-2} + C \)
Putting it all together:
$$ \frac{u^{-2}}{-2} - \log |u| + C $$
$$ -\frac{1}{2u^2} - \log |u| + C $$
Finally, substituting back \( u = \sin(x) \):
$$ -\frac{1}{2 \sin^2(x)} - \log | \sin(x) | + C $$
This is the final result of the integral.
And that concludes the calculation.
