Integral Calculation Exercise 6

We are asked to evaluate the following definite integral:

$$ \int_1^{\sqrt{e}} \frac{\log(x) - 2}{x[\log^2(x) - 1]} \ dx $$

We'll solve this by making an appropriate substitution. Let’s introduce the auxiliary variable:

$$ t = \log(x) $$

Taking differentials on both sides gives:

$$ dt = \frac{1}{x} \ dx $$

We now rewrite the integral in terms of the new variable \( t \), noting that \( t = \log(x) \).

The limits of integration transform as follows:

$$ \log(1) = 0, \quad \log(\sqrt{e}) = \frac{1}{2} $$

So the integral becomes:

$$ \int_0^{\frac{1}{2}} \frac{\log(x) - 2}{x[\log^2(x) - 1]} \ dx $$

Substituting \( t = \log(x) \) into the integrand:

$$ \int_0^{\frac{1}{2}} \frac{t - 2}{x(t^2 - 1)} \ dx $$

Now using the differential \( dt = \frac{1}{x} dx \), we obtain:

$$ \int_0^{\frac{1}{2}} \frac{t - 2}{t^2 - 1} \ dt $$

Next, we factor the denominator using the identity \( t^2 - 1 = (t - 1)(t + 1) \):

$$ \int_0^{\frac{1}{2}} \frac{t - 2}{(t - 1)(t + 1)} \ dt $$

We now apply the method of partial fractions to decompose the integrand:

$$ \frac{t - 2}{(t - 1)(t + 1)} = \frac{A}{t - 1} + \frac{B}{t + 1} $$

Multiplying both sides by the denominator and simplifying:

$$ t - 2 = A(t + 1) + B(t - 1) = t(A + B) + (A - B) $$

Matching coefficients, we get the system:

$$ A + B = 1 \\ A - B = -2 $$

Solving this system yields:

$$ A = -\frac{1}{2}, \quad B = \frac{3}{2} $$

Substituting back, the integral becomes:

$$ \int_0^{\frac{1}{2}} \left( \frac{-\frac{1}{2}}{t - 1} + \frac{\frac{3}{2}}{t + 1} \right) \ dt $$

We now apply the linearity of the integral:

$$ -\frac{1}{2} \int_0^{\frac{1}{2}} \frac{1}{t - 1} \ dt + \frac{3}{2} \int_0^{\frac{1}{2}} \frac{1}{t + 1} \ dt $$

Both are elementary integrals. Their antiderivatives are \( \log|t - 1| \) and \( \log|t + 1| \), respectively:

$$ -\frac{1}{2} \left[ \log|t - 1| \right]_0^{\frac{1}{2}} + \frac{3}{2} \left[ \log|t + 1| \right]_0^{\frac{1}{2}} $$

Note. We omit the constant of integration since this is a definite integral.

Now evaluate the two logarithmic expressions:

$$ -\frac{1}{2} \left( \log\left| \frac{1}{2} - 1 \right| - \log| -1 | \right) + \frac{3}{2} \left( \log\left| \frac{3}{2} \right| - \log|1| \right) $$

Since \( \log|1| = 0 \) and \( \log|-1| = \log(1) = 0 \), we simplify to:

$$ -\frac{1}{2} \log\left( \frac{1}{2} \right) + \frac{3}{2} \log\left( \frac{3}{2} \right) $$

Therefore, the value of the definite integral is:

$$ \frac{3}{2} \cdot \log\left( \frac{3}{2} \right) - \frac{1}{2} \cdot \log\left( \frac{1}{2} \right) $$

And that concludes the computation.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration