Integral Calculation Exercise 6
We are asked to evaluate the following definite integral:
$$ \int_1^{\sqrt{e}} \frac{\log(x) - 2}{x[\log^2(x) - 1]} \ dx $$
We'll solve this by making an appropriate substitution. Let’s introduce the auxiliary variable:
$$ t = \log(x) $$
Taking differentials on both sides gives:
$$ dt = \frac{1}{x} \ dx $$
We now rewrite the integral in terms of the new variable \( t \), noting that \( t = \log(x) \).
The limits of integration transform as follows:
$$ \log(1) = 0, \quad \log(\sqrt{e}) = \frac{1}{2} $$
So the integral becomes:
$$ \int_0^{\frac{1}{2}} \frac{\log(x) - 2}{x[\log^2(x) - 1]} \ dx $$
Substituting \( t = \log(x) \) into the integrand:
$$ \int_0^{\frac{1}{2}} \frac{t - 2}{x(t^2 - 1)} \ dx $$
Now using the differential \( dt = \frac{1}{x} dx \), we obtain:
$$ \int_0^{\frac{1}{2}} \frac{t - 2}{t^2 - 1} \ dt $$
Next, we factor the denominator using the identity \( t^2 - 1 = (t - 1)(t + 1) \):
$$ \int_0^{\frac{1}{2}} \frac{t - 2}{(t - 1)(t + 1)} \ dt $$
We now apply the method of partial fractions to decompose the integrand:
$$ \frac{t - 2}{(t - 1)(t + 1)} = \frac{A}{t - 1} + \frac{B}{t + 1} $$
Multiplying both sides by the denominator and simplifying:
$$ t - 2 = A(t + 1) + B(t - 1) = t(A + B) + (A - B) $$
Matching coefficients, we get the system:
$$ A + B = 1 \\ A - B = -2 $$
Solving this system yields:
$$ A = -\frac{1}{2}, \quad B = \frac{3}{2} $$
Substituting back, the integral becomes:
$$ \int_0^{\frac{1}{2}} \left( \frac{-\frac{1}{2}}{t - 1} + \frac{\frac{3}{2}}{t + 1} \right) \ dt $$
We now apply the linearity of the integral:
$$ -\frac{1}{2} \int_0^{\frac{1}{2}} \frac{1}{t - 1} \ dt + \frac{3}{2} \int_0^{\frac{1}{2}} \frac{1}{t + 1} \ dt $$
Both are elementary integrals. Their antiderivatives are \( \log|t - 1| \) and \( \log|t + 1| \), respectively:
$$ -\frac{1}{2} \left[ \log|t - 1| \right]_0^{\frac{1}{2}} + \frac{3}{2} \left[ \log|t + 1| \right]_0^{\frac{1}{2}} $$
Note. We omit the constant of integration since this is a definite integral.
Now evaluate the two logarithmic expressions:
$$ -\frac{1}{2} \left( \log\left| \frac{1}{2} - 1 \right| - \log| -1 | \right) + \frac{3}{2} \left( \log\left| \frac{3}{2} \right| - \log|1| \right) $$
Since \( \log|1| = 0 \) and \( \log|-1| = \log(1) = 0 \), we simplify to:
$$ -\frac{1}{2} \log\left( \frac{1}{2} \right) + \frac{3}{2} \log\left( \frac{3}{2} \right) $$
Therefore, the value of the definite integral is:
$$ \frac{3}{2} \cdot \log\left( \frac{3}{2} \right) - \frac{1}{2} \cdot \log\left( \frac{1}{2} \right) $$
And that concludes the computation.
