Integral Calculation Exercise 7

We aim to evaluate the integral

$$ \int \frac{x^2}{4x^2+1} \ dx $$

To simplify the computation, we try to manipulate the integrand so that the numerator mirrors the denominator.

We start by multiplying and dividing the integrand by 4:

$$ \int \frac{4}{4} \cdot \frac{x^2}{4x^2+1} \ dx $$

$$ \int \frac{1}{4} \cdot \frac{4x^2}{4x^2+1} \ dx $$

Factoring out the constant \( \frac{1}{4} \):

$$ \frac{1}{4} \cdot \int \frac{4x^2}{4x^2+1} \ dx $$

We now rewrite the numerator by adding and subtracting 1:

$$ \frac{1}{4} \cdot \int \frac{4x^2 + 1 - 1}{4x^2+1} \ dx $$

$$ \frac{1}{4} \cdot \int \left( \frac{4x^2 + 1}{4x^2+1} - \frac{1}{4x^2+1} \right) \ dx $$

The first term simplifies to 1:

$$ \frac{1}{4} \cdot \int \left( 1 - \frac{1}{4x^2+1} \right) \ dx $$

Applying the linearity of the integral, we can split this into two separate integrals:

$$ \frac{1}{4} \cdot \left[ \int 1 \ dx - \int \frac{1}{4x^2+1} \ dx \right] $$

The first integral is immediate: \( \int 1 \ dx = x + c \), where \( c \) is an arbitrary constant of integration.

$$ \frac{1}{4} \cdot \left[ x + c - \int \frac{1}{4x^2+1} \ dx \right] $$

We rewrite the integrand in the second term using the identity \( 4x^2 = (2x)^2 \):

$$ \frac{1}{4} \cdot \left[ x + c - \int \frac{1}{(2x)^2 + 1} \ dx \right] $$

To evaluate this integral, we apply the substitution method with the auxiliary variable u = 2x:

$$ u = 2x $$

Differentiating both sides gives:

$$ du = 2 \ dx \quad \Rightarrow \quad dx = \frac{du}{2} $$

Substituting into the integral yields:

$$ \frac{1}{4} \cdot \left[ x + c - \int \frac{1}{(2x)^2 + 1} \ dx \right] $$

$$ \frac{1}{4} \cdot \left[ x + c - \int \frac{1}{u^2 + 1} \cdot \frac{du}{2} \right] $$

Extracting the constant \( \frac{1}{2} \):

$$ \frac{1}{4} \cdot \left[ x + c - \frac{1}{2} \cdot \int \frac{1}{u^2 + 1} \ du \right] $$

This is a standard integral: \( \int \frac{1}{u^2 + 1} \ du = \arctan(u) + c \).

Substituting back \( u = 2x \), we obtain:

$$ \frac{1}{4} \cdot \left[ x + c - \frac{1}{2} \cdot \arctan(2x) \right] $$

Expanding the expression gives:

$$ \frac{x}{4} - \frac{1}{8} \cdot \arctan(2x) + c $$

Therefore, the solution to the integral is:

$$ \int \frac{x^2}{4x^2+1} \ dx = \frac{x}{4} - \frac{1}{8} \cdot \arctan(2x) + c $$

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration