Integral Example 31

We’re asked to evaluate the integral

$$ \int \frac{1}{(1+x^2) \cdot \arctan x} \ dx $$

We approach this using the substitution method.

Let’s start by computing the differential of the arctangent function:

$$ d ( \arctan x ) = \frac{1}{1+x^2} \ dx $$

Solving for \( dx \), we get:

$$ dx = (1+x^2) \ d ( \arctan x ) $$

We now substitute this expression for \( dx \) into the integral:

$$ \int \frac{1}{(1+x^2) \arctan x} \ dx $$

$$ \int \frac{1}{(1+x^2) \arctan x} \cdot (1+x^2) \ d ( \arctan x ) $$

The terms \( (1+x^2) \) cancel out, leaving us with:

$$ \int \frac{1}{\arctan x} \ d ( \arctan x ) $$

Now, set t = \(\arctan(x)\), so the integral becomes:

$$ \int \frac{1}{t} \ dt $$

This is a standard integral with a well-known result:

$$ \int \frac{1}{t} \ dt = \log|t| + C $$

Substituting back \( t = \arctan(x) \), we get:

$$ \log|\arctan x| + C $$

Therefore, the solution to the original integral is:

$$ \int \frac{1}{(1+x^2) \arctan x} \ dx = \log|\arctan x| + C $$

And that completes the calculation.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration