Integral Example 31
We’re asked to evaluate the integral
$$ \int \frac{1}{(1+x^2) \cdot \arctan x} \ dx $$
We approach this using the substitution method.
Let’s start by computing the differential of the arctangent function:
$$ d ( \arctan x ) = \frac{1}{1+x^2} \ dx $$
Solving for \( dx \), we get:
$$ dx = (1+x^2) \ d ( \arctan x ) $$
We now substitute this expression for \( dx \) into the integral:
$$ \int \frac{1}{(1+x^2) \arctan x} \ dx $$
$$ \int \frac{1}{(1+x^2) \arctan x} \cdot (1+x^2) \ d ( \arctan x ) $$
The terms \( (1+x^2) \) cancel out, leaving us with:
$$ \int \frac{1}{\arctan x} \ d ( \arctan x ) $$
Now, set t = \(\arctan(x)\), so the integral becomes:
$$ \int \frac{1}{t} \ dt $$
This is a standard integral with a well-known result:
$$ \int \frac{1}{t} \ dt = \log|t| + C $$
Substituting back \( t = \arctan(x) \), we get:
$$ \log|\arctan x| + C $$
Therefore, the solution to the original integral is:
$$ \int \frac{1}{(1+x^2) \arctan x} \ dx = \log|\arctan x| + C $$
And that completes the calculation.
