Integral Exercise 11

We are asked to evaluate the following integral:

$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$

We start by introducing a substitution to simplify the expression:

$$ t = \sqrt{x} $$

Next, we differentiate both sides:

$$ dt = \frac{1}{2 \sqrt{x}} \ dx $$

Multiplying both sides by 2 gives:

$$ 2 \, dt = \frac{1}{\sqrt{x}} \ dx $$

We now replace \( \frac{1}{\sqrt{x}} \, dx \) with \( 2 \, dt \) in the integral:

$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$

$$ \int (1 + e^{ \sqrt{x}}) \cdot \frac{1}{\sqrt{x}} \ dx $$

$$ \int (1 + e^{ \sqrt{x}}) \cdot 2 \ dt $$

Since \( t = \sqrt{x} \), we can rewrite the integral as:

$$ \int (1 + e^t) \cdot 2 \ dt $$

$$ \int (2 + 2e^t) \ dt $$

Splitting the integral gives:

$$ \int 2 \ dt + \int 2e^t \ dt $$

$$ 2t + 2e^t + c $$

Substituting back \( t = \sqrt{x} \), the final result is:

$$ 2 \sqrt{x} + 2 e^{ \sqrt{x} } + c $$

    Alternative Method

    Let’s now solve the same integral using a slightly different approach:

    $$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$

    As before, we set:

    $$ t = \sqrt{x} $$

    Squaring both sides gives:

    $$ x = t^2 $$

    Now differentiate both sides with respect to \( t \):

    $$ dx = 2t \, dt $$

    Substitute this into the original integral:

    $$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \cdot 2t \, dt $$

    Replacing \( x \) with \( t^2 \) gives:

    $$ \int \frac{1 + e^{ \sqrt{t^2}}}{\sqrt{t^2}} \cdot 2t \, dt $$

    Since \( \sqrt{t^2} = t \) for \( t \geq 0 \), we simplify to:

    $$ \int \frac{1 + e^t}{t} \cdot 2t \, dt $$

    $$ \int (1 + e^t) \cdot 2 \, dt $$

    $$ \int 2 + 2e^t \ dt $$

    Splitting again:

    $$ \int 2 \ dt + \int 2e^t \ dt $$

    $$ 2t + 2e^t + c $$

    Substituting \( t = \sqrt{x} \), we find the same result:

    $$ 2 \sqrt{x} + 2 e^{ \sqrt{x} } + c $$

    This confirms the solution is correct.

    And so on.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Calculus

    Exercises

    Definite Integrals

    Indefinite Integrals

    Multivariable Integration

    Numerical Integration