Integral Exercise 11
We are asked to evaluate the following integral:
$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$
We start by introducing a substitution to simplify the expression:
$$ t = \sqrt{x} $$
Next, we differentiate both sides:
$$ dt = \frac{1}{2 \sqrt{x}} \ dx $$
Multiplying both sides by 2 gives:
$$ 2 \, dt = \frac{1}{\sqrt{x}} \ dx $$
We now replace \( \frac{1}{\sqrt{x}} \, dx \) with \( 2 \, dt \) in the integral:
$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$
$$ \int (1 + e^{ \sqrt{x}}) \cdot \frac{1}{\sqrt{x}} \ dx $$
$$ \int (1 + e^{ \sqrt{x}}) \cdot 2 \ dt $$
Since \( t = \sqrt{x} \), we can rewrite the integral as:
$$ \int (1 + e^t) \cdot 2 \ dt $$
$$ \int (2 + 2e^t) \ dt $$
Splitting the integral gives:
$$ \int 2 \ dt + \int 2e^t \ dt $$
$$ 2t + 2e^t + c $$
Substituting back \( t = \sqrt{x} \), the final result is:
$$ 2 \sqrt{x} + 2 e^{ \sqrt{x} } + c $$
Alternative Method
Let’s now solve the same integral using a slightly different approach:
$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \ dx $$
As before, we set:
$$ t = \sqrt{x} $$
Squaring both sides gives:
$$ x = t^2 $$
Now differentiate both sides with respect to \( t \):
$$ dx = 2t \, dt $$
Substitute this into the original integral:
$$ \int \frac{1 + e^{ \sqrt{x}}}{\sqrt{x}} \cdot 2t \, dt $$
Replacing \( x \) with \( t^2 \) gives:
$$ \int \frac{1 + e^{ \sqrt{t^2}}}{\sqrt{t^2}} \cdot 2t \, dt $$
Since \( \sqrt{t^2} = t \) for \( t \geq 0 \), we simplify to:
$$ \int \frac{1 + e^t}{t} \cdot 2t \, dt $$
$$ \int (1 + e^t) \cdot 2 \, dt $$
$$ \int 2 + 2e^t \ dt $$
Splitting again:
$$ \int 2 \ dt + \int 2e^t \ dt $$
$$ 2t + 2e^t + c $$
Substituting \( t = \sqrt{x} \), we find the same result:
$$ 2 \sqrt{x} + 2 e^{ \sqrt{x} } + c $$
This confirms the solution is correct.
And so on.
