Integral Exercise 23

We are asked to compute the following integral:

$$ \int \frac{1 - x^2}{x^2 + 1} \ dx $$

This integral can be approached in more than one way.

Method 1

We begin by rewriting the integrand in a more convenient form:

$$ \int \frac{(-1)\cdot(-1 + x^2)}{x^2 + 1} \ dx $$

$$ = - \int \frac{x^2 - 1}{x^2 + 1} \ dx $$

Next, we add and subtract 1 in the numerator:

$$ = - \int \frac{x^2 - 1 + 1 - 1}{x^2 + 1} \ dx $$

$$ = - \int \frac{(x^2 + 1) - 2}{x^2 + 1} \ dx $$

$$ = - \int \left( \frac{x^2 + 1}{x^2 + 1} - \frac{2}{x^2 + 1} \right) \ dx $$

$$ = - \left[ \int 1 \ dx - 2 \int \frac{1}{x^2 + 1} \ dx \right] $$

$$ = -x + 2 \cdot \arctan(x) + c $$

So the solution is:

$$ \int \frac{1 - x^2}{x^2 + 1} \ dx = -x + 2 \cdot \arctan(x) + c $$

Method 2

Alternatively, we can split the integrand directly:

$$ \int \frac{1 - x^2}{x^2 + 1} \ dx = \int \left( \frac{1}{x^2 + 1} - \frac{x^2}{x^2 + 1} \right) \ dx $$

Using the linearity of the integral, we separate the terms:

$$ = \int \frac{1}{x^2 + 1} \ dx - \int \frac{x^2}{x^2 + 1} \ dx $$

The first integral is straightforward:

∫ 1/(x² + 1) dx = arctan(x) + c

So we have:

$$ \arctan(x) + C - \int \frac{x^2}{x^2 + 1} \ dx $$

To evaluate the remaining integral, we rewrite the numerator as \( x^2 + 1 - 1 \):

$$ = \arctan(x) + C - \int \frac{x^2 + 1 - 1}{x^2 + 1} \ dx $$

$$ = \arctan(x) + C - \int \left( 1 - \frac{1}{x^2 + 1} \right) \ dx $$

$$ = \arctan(x) + C - \left[ \int 1 \ dx - \int \frac{1}{x^2 + 1} \ dx \right] $$

$$ = \arctan(x) + C - \left[ x - \arctan(x) \right] $$

$$ = \arctan(x) + C - x + \arctan(x) $$

$$ = 2 \cdot \arctan(x) - x + C $$

Which confirms the result obtained using the first method.

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration