Integral Exercise 25
We aim to evaluate the following integral:
$$ \int \frac{1}{x \sqrt{1 - \log^2 x}} \ dx $$
To proceed, we use a differential substitution based on \( \log x \):
$$ d(\log x) = \frac{1}{x} \ dx $$
By the invariance property of equations, we multiply both sides by \( x \):
$$ x \cdot d(\log x) = \frac{1}{x} \cdot dx \cdot x $$
This simplifies to an expression for \( dx \):
$$ dx = x \cdot d(\log x) $$
Now we substitute dx = x · d(log x) into the integral:
$$ \int \frac{1}{x \sqrt{1 - \log^2 x}} \cdot \left( x \cdot d(\log x) \right) $$
The \( x \) terms cancel out, leaving:
$$ \int \frac{1}{\sqrt{1 - \log^2 x}} \cdot d(\log x) $$
Let’s now make the substitution \( t = \log x \):
$$ \int \frac{1}{\sqrt{1 - t^2}} \ dt $$
This is a standard form whose antiderivative is the arcsine function:
$$ \int \frac{1}{\sqrt{1 - t^2}} \ dt = \arcsin(t) + c $$
Substituting back \( t = \log x \), we obtain:
$$ \arcsin(\log x) + c $$
Therefore, the final result is:
$$ \int \frac{1}{x \sqrt{1 - \log^2 x}} \ dx = \arcsin(\log x) + c $$
And that completes the solution.
