Integral Exercise 30

We are asked to evaluate the following integral:

$$ \int \frac{1}{1 + e^{3x}} \ dx $$

To simplify the expression, we multiply and divide the integrand by \( e^{-3x} \):

$$ \int \frac{1}{1 + e^{3x}} \cdot \frac{e^{-3x}}{e^{-3x}} \ dx $$

This gives:

$$ \int \frac{e^{-3x}}{(1 + e^{3x}) \cdot e^{-3x}} \ dx = \int \frac{e^{-3x}}{e^{-3x} + 1} \ dx $$

We now perform a substitution. Let:

$$ u = e^{-3x} + 1 $$

Differentiating both sides with respect to \( x \), we find:

$$ du = -3e^{-3x} \ dx \quad \Rightarrow \quad \frac{du}{-3} = e^{-3x} \ dx $$

Substituting into the integral, we obtain:

$$ \int \frac{1}{u} \cdot \frac{du}{-3} = -\frac{1}{3} \int \frac{1}{u} \ du $$

This is a standard logarithmic integral:

$$ -\frac{1}{3} \ln |u| + c $$

Substituting back \( u = e^{-3x} + 1 \), we conclude that:

$$ \int \frac{1}{1 + e^{3x}} \ dx = -\frac{1}{3} \ln |e^{-3x} + 1| + c $$

And that completes the evaluation.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration