Integral Exercise 30
We are asked to evaluate the following integral:
$$ \int \frac{1}{1 + e^{3x}} \ dx $$
To simplify the expression, we multiply and divide the integrand by \( e^{-3x} \):
$$ \int \frac{1}{1 + e^{3x}} \cdot \frac{e^{-3x}}{e^{-3x}} \ dx $$
This gives:
$$ \int \frac{e^{-3x}}{(1 + e^{3x}) \cdot e^{-3x}} \ dx = \int \frac{e^{-3x}}{e^{-3x} + 1} \ dx $$
We now perform a substitution. Let:
$$ u = e^{-3x} + 1 $$
Differentiating both sides with respect to \( x \), we find:
$$ du = -3e^{-3x} \ dx \quad \Rightarrow \quad \frac{du}{-3} = e^{-3x} \ dx $$
Substituting into the integral, we obtain:
$$ \int \frac{1}{u} \cdot \frac{du}{-3} = -\frac{1}{3} \int \frac{1}{u} \ du $$
This is a standard logarithmic integral:
$$ -\frac{1}{3} \ln |u| + c $$
Substituting back \( u = e^{-3x} + 1 \), we conclude that:
$$ \int \frac{1}{1 + e^{3x}} \ dx = -\frac{1}{3} \ln |e^{-3x} + 1| + c $$
And that completes the evaluation.
