Integral Exercise 33

We are tasked with evaluating the integral:

$$ \int \frac{e^{2x}}{3 - e^x} \ dx $$

We begin by rewriting the integrand using properties of exponents:

$$ \int \frac{e^x \cdot e^x}{3 - e^x} \ dx = \int \frac{e^x}{3 - e^x} \cdot e^x \ dx $$

Next, we apply the substitution method.

Let \( u = e^x \). Then the differential becomes:

$$ du = e^x \ dx $$

This allows us to replace \( e^x \ dx \) with \( du \):

$$ \int \frac{e^x}{3 - e^x} \cdot e^x \ dx = \int \frac{e^x}{3 - e^x} \ du $$

Substituting \( u = e^x \), the integral becomes:

$$ \int \frac{u}{3 - u} \ du $$

To simplify the integrand, we factor out a minus sign from the denominator:

$$ = - \int \frac{-u}{3 - u} \ du $$

Now we rewrite the numerator by adding and subtracting 3:

$$ = - \int \frac{-u + 3 - 3}{3 - u} \ du $$

This splits into two simpler terms:

$$ = - \int \left( \frac{-3}{3 - u} + \frac{3 - u}{3 - u} \right) du $$

$$ = - \left[ \int \frac{-3}{3 - u} \ du + \int 1 \ du \right] $$

The second integral is straightforward:

$$ \int 1 \ du = u $$

So we now have:

$$ - \left[ -3 \int \frac{1}{3 - u} \ du + u \right] + c $$

We evaluate the remaining integral by substituting \( t = 3 - u \), hence:

$$ dt = -du \quad \Rightarrow \quad du = -dt $$

Substituting, we get:

$$ - \left[ -3 \int \frac{1}{t} \cdot (-1) \ dt + u \right] + c $$

$$ = - \left[ 3 \int \frac{1}{t} \ dt + u \right] + c $$

The integral of \( 1/t \) is standard:

$$ \int \frac{1}{t} \ dt = \log |t| $$

Therefore:

$$ - \left[ 3 \log |t| + u \right] + c $$

Now substitute back \( t = 3 - u \):

$$ - \left[ 3 \log |3 - u| + u \right] + c $$

Which simplifies to:

$$ -3 \log |3 - u| - u + c $$

Finally, substituting \( u = e^x \) yields the solution:

$$ -3 \log |3 - e^x| - e^x + c $$

And that completes the evaluation of the integral.

 

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration