Integral Exercise 33
We are tasked with evaluating the integral:
$$ \int \frac{e^{2x}}{3 - e^x} \ dx $$
We begin by rewriting the integrand using properties of exponents:
$$ \int \frac{e^x \cdot e^x}{3 - e^x} \ dx = \int \frac{e^x}{3 - e^x} \cdot e^x \ dx $$
Next, we apply the substitution method.
Let \( u = e^x \). Then the differential becomes:
$$ du = e^x \ dx $$
This allows us to replace \( e^x \ dx \) with \( du \):
$$ \int \frac{e^x}{3 - e^x} \cdot e^x \ dx = \int \frac{e^x}{3 - e^x} \ du $$
Substituting \( u = e^x \), the integral becomes:
$$ \int \frac{u}{3 - u} \ du $$
To simplify the integrand, we factor out a minus sign from the denominator:
$$ = - \int \frac{-u}{3 - u} \ du $$
Now we rewrite the numerator by adding and subtracting 3:
$$ = - \int \frac{-u + 3 - 3}{3 - u} \ du $$
This splits into two simpler terms:
$$ = - \int \left( \frac{-3}{3 - u} + \frac{3 - u}{3 - u} \right) du $$
$$ = - \left[ \int \frac{-3}{3 - u} \ du + \int 1 \ du \right] $$
The second integral is straightforward:
$$ \int 1 \ du = u $$
So we now have:
$$ - \left[ -3 \int \frac{1}{3 - u} \ du + u \right] + c $$
We evaluate the remaining integral by substituting \( t = 3 - u \), hence:
$$ dt = -du \quad \Rightarrow \quad du = -dt $$
Substituting, we get:
$$ - \left[ -3 \int \frac{1}{t} \cdot (-1) \ dt + u \right] + c $$
$$ = - \left[ 3 \int \frac{1}{t} \ dt + u \right] + c $$
The integral of \( 1/t \) is standard:
$$ \int \frac{1}{t} \ dt = \log |t| $$
Therefore:
$$ - \left[ 3 \log |t| + u \right] + c $$
Now substitute back \( t = 3 - u \):
$$ - \left[ 3 \log |3 - u| + u \right] + c $$
Which simplifies to:
$$ -3 \log |3 - u| - u + c $$
Finally, substituting \( u = e^x \) yields the solution:
$$ -3 \log |3 - e^x| - e^x + c $$
And that completes the evaluation of the integral.
